BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30587391)

  • 21. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S; Dajani HR; Meade RD; Kenny GP; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Chair-Based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time.
    Tang Z; Tamura T; Sekine M; Huang M; Chen W; Yoshida M; Sakatani K; Kobayashi H; Kanaya S
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1194-1205. PubMed ID: 28113527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio.
    Thambiraj G; Gandhi U; Devanand V; Mangalanathan U
    Physiol Meas; 2019 Jul; 40(7):075001. PubMed ID: 31051486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter.
    Chen Y; Shi S; Liu YK; Huang SL; Ma T
    Physiol Meas; 2018 Sep; 39(9):095002. PubMed ID: 30089101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PCA-Based Multi-Wavelength Photoplethysmography Algorithm for Cuffless Blood Pressure Measurement on Elderly Subjects.
    Liu J; Qiu S; Luo N; Lau SK; Yu H; Kwok T; Zhang YT; Zhao N
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):663-673. PubMed ID: 32750946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cuffless and Touchless Measurement of Blood Pressure from Ballistocardiogram Based on a Body Weight Scale.
    Liu SH; Zhang BH; Chen W; Su CH; Chin CL
    Nutrients; 2022 Jun; 14(12):. PubMed ID: 35745282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of Real-Time Cuffless Blood Pressure Measurement Systems with ECG Electrodes and a Microphone Using Pulse Transit Time (PTT).
    Choi J; Kang Y; Park J; Joung Y; Koo C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Clustering-Based Algorithm for Continuous and Noninvasive Cuff-Less Blood Pressure Estimation.
    Farki A; Baradaran Kazemzadeh R; Akhondzadeh Noughabi E
    J Healthc Eng; 2022; 2022():3549238. PubMed ID: 35075386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scenario Adaptive Cuffless Blood Pressure Estimation by Integrating Cardiovascular Coupling Effects.
    Qiu S; Zhang YT; Lau SK; Zhao N
    IEEE J Biomed Health Inform; 2022 Dec; PP():. PubMed ID: 37015611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel Cuffless Blood Pressure Estimation Method Using a Bayesian Hierarchical Model.
    He S; Dajani HR; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():898-901. PubMed ID: 34891435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel blood pressure estimation method using single photoplethysmography feature.
    Yang Chen ; Shuo Cheng ; Tong Wang ; Ting Ma
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1712-1715. PubMed ID: 29060216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations.
    Joung J; Jung CW; Lee HC; Chae MJ; Kim HS; Park J; Shin WY; Kim C; Lee M; Choi C
    Sci Rep; 2023 May; 13(1):8605. PubMed ID: 37244974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and validation of dual-point time-differentiated photoplethysmogram (2PPG) wearable for cuffless blood pressure estimation.
    Wong KFM; Huang W; Ee DYH; Ng EYK
    Comput Methods Programs Biomed; 2024 Aug; 253():108251. PubMed ID: 38824806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 39. A PPG-Based Calibration-Free Cuffless Blood Pressure Estimation Method Using Cardiovascular Dynamics.
    Samimi H; Dajani HR
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure.
    Finnegan E; Davidson S; Harford M; Watkinson P; Tarassenko L; Villarroel M
    Sci Rep; 2023 Jan; 13(1):986. PubMed ID: 36653426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.