These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 30587837)
1. Influence of Nanoparticle Pretreatment on the Thermal, Rheological and Mechanical Properties of PLA-PBSA Nanocomposites Incorporating Cellulose Nanocrystals or Montmorillonite. Abdallah W; Mirzadeh A; Tan V; Kamal MR Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30587837 [TBL] [Abstract][Full Text] [Related]
2. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Kamal MR; Khoshkava V Carbohydr Polym; 2015 Jun; 123():105-14. PubMed ID: 25843840 [TBL] [Abstract][Full Text] [Related]
3. Morphological and Rheological Properties of PLA, PBAT, and PLA/PBAT Blend Nanocomposites Containing CNCs. Mohammadi M; Heuzey MC; Carreau PJ; Taguet A Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33801672 [TBL] [Abstract][Full Text] [Related]
4. Binary Green Blends of Poly(lactic acid) with Poly(butylene adipate- Coiai S; Di Lorenzo ML; Cinelli P; Righetti MC; Passaglia E Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372090 [TBL] [Abstract][Full Text] [Related]
5. Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCs in PLA through rheological analysis. Özdemir B; Nofar M Carbohydr Polym; 2021 Sep; 268():118243. PubMed ID: 34127223 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties. Messin T; Follain N; Lozay Q; Guinault A; Delpouve N; Soulestin J; Sollogoub C; Marais S Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33419300 [TBL] [Abstract][Full Text] [Related]
7. Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Li J; Qiu Z Carbohydr Polym; 2019 Feb; 205():211-216. PubMed ID: 30446097 [TBL] [Abstract][Full Text] [Related]
9. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. Khoshkava V; Kamal MR ACS Appl Mater Interfaces; 2014 Jun; 6(11):8146-57. PubMed ID: 24809661 [TBL] [Abstract][Full Text] [Related]
10. Thermal and rheological properties of biodegradable poly[(butylene succinate)-co-adipate] nanocomposites. Bandyopadhyay J; Maity A; Khatua BB; Ray SS J Nanosci Nanotechnol; 2010 Jul; 10(7):4184-95. PubMed ID: 21128399 [TBL] [Abstract][Full Text] [Related]
11. Bamboo Fiber Based Cellulose Nanocrystals/Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites: Morphological, Mechanical and Thermal Properties. Rasheed M; Jawaid M; Parveez B Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33805433 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay. Chen JH; Yang MC Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():301-8. PubMed ID: 25491991 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical Characterization and Finite Element Analysis-Assisted Mechanical Behavior of Polylactic Acid-Montmorillonite 3D Printed Nanocomposites. Grigora ME; Terzopoulou Z; Tsongas K; Bikiaris DN; Tzetzis D Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957072 [TBL] [Abstract][Full Text] [Related]
14. Structure-barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction. Charlon S; Marais S; Dargent E; Soulestin J; Sclavons M; Follain N Phys Chem Chem Phys; 2015 Nov; 17(44):29918-34. PubMed ID: 26489904 [TBL] [Abstract][Full Text] [Related]
16. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites. Ojijo V; Sinha Ray S; Sadiku R ACS Appl Mater Interfaces; 2012 May; 4(5):2395-405. PubMed ID: 22496491 [TBL] [Abstract][Full Text] [Related]
17. Study of Thermal, Mechanical and Barrier Properties of Biodegradable PLA/PBAT Films with Highly Oriented MMT. Ludwiczak J; Frąckowiak S; Leluk K Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885343 [TBL] [Abstract][Full Text] [Related]
18. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Zhu B; Bai T; Wang P; Wang Y; Liu C; Shen C Int J Biol Macromol; 2020 Jun; 153():1272-1280. PubMed ID: 31758994 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Bai T; Zhu B; Liu H; Wang Y; Song G; Liu C; Shen C Int J Biol Macromol; 2020 May; 151():628-634. PubMed ID: 32092421 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Zhang C; Salick MR; Cordie TM; Ellingham T; Dan Y; Turng LS Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():463-471. PubMed ID: 25686973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]