These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30587970)

  • 1. Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles.
    Matuszak J; Lutz B; Sekita A; Zaloga J; Alexiou C; Lyer S; Cicha I
    Int J Nanomedicine; 2018; 13():8443-8460. PubMed ID: 30587970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the effects of dexamethasone treatment by MRI using in vivo iron oxide nanoparticle-labeled macrophages.
    Gramoun A; Crowe LA; Maurizi L; Wirth W; Tobalem F; Grosdemange K; Coullerez G; Eckstein F; Koenders MI; Van den Berg WB; Hofmann H; Vallée JP
    Arthritis Res Ther; 2014 Jun; 16(3):R131. PubMed ID: 24957862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of Iron Oxide-Based Contrast Agents in Rabbit Atherosclerotic Plaques in Relation to Plaque Age and Vulnerability Features.
    Sekita A; Unterweger H; Berg S; Ohlmeyer S; Bäuerle T; Zheng KH; Coolen BF; Nederveen AJ; Cabella C; Rossi S; Stroes ESG; Alexiou C; Lyer S; Cicha I
    Int J Nanomedicine; 2024; 19():1645-1666. PubMed ID: 38406599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.
    Evans RJ; Lavin B; Phinikaridou A; Chooi KY; Mohri Z; Wong E; Boyle JJ; Krams R; Botnar R; Long NJ
    Nanotheranostics; 2020; 4(4):184-194. PubMed ID: 32637296
    [No Abstract]   [Full Text] [Related]  

  • 5. Promoting the Delivery of Nanoparticles to Atherosclerotic Plaques by DNA Coating.
    Zhang L; Tian XY; Chan CKW; Bai Q; Cheng CK; Chen FM; Cheung MSH; Yin B; Yang H; Yung WY; Chen Z; Ding F; Leung KC; Zhang C; Huang Y; Lau JYW; Choi CHJ
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):13888-13904. PubMed ID: 30516979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy.
    Zhang M; He J; Jiang C; Zhang W; Yang Y; Wang Z; Liu J
    Int J Nanomedicine; 2017; 12():533-558. PubMed ID: 28144137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI.
    Tarin C; Carril M; Martin-Ventura JL; Markuerkiaga I; Padro D; Llamas-Granda P; Moreno JA; García I; Genicio N; Plaza-Garcia S; Blanco-Colio LM; Penades S; Egido J
    Sci Rep; 2015 Nov; 5():17135. PubMed ID: 26616677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI).
    Smith BR; Heverhagen J; Knopp M; Schmalbrock P; Shapiro J; Shiomi M; Moldovan NI; Ferrari M; Lee SC
    Biomed Microdevices; 2007 Oct; 9(5):719-27. PubMed ID: 17562181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives.
    Burtea C; Ballet S; Laurent S; Rousseaux O; Dencausse A; Gonzalez W; Port M; Corot C; Vander Elst L; Muller RN
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):e36-48. PubMed ID: 22516067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe.
    Wei Q; Wang J; Shi W; Zhang B; Jiang H; Du M; Mei H; Hu Y
    Acta Biomater; 2019 May; 90():324-336. PubMed ID: 30954623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion.
    Rojas JM; Sanz-Ortega L; Mulens-Arias V; Gutiérrez L; Pérez-Yagüe S; Barber DF
    Nanomedicine; 2016 May; 12(4):1127-1138. PubMed ID: 26733263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function.
    Matuszak J; Dörfler P; Zaloga J; Unterweger H; Lyer S; Dietel B; Alexiou C; Cicha I
    Clin Hemorheol Microcirc; 2015; 61(2):259-77. PubMed ID: 26410877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin inhibits macrophage infiltration and promotes plaque stabilization by upregulating anti-inflammatory HGF/c-Met system in the atherosclerotic rabbit: USPIO-enhanced MRI assessment.
    Hu ZP; Fang XL; Sheng B; Guo Y; Yu YQ
    Vascul Pharmacol; 2020 Apr; 127():106659. PubMed ID: 32068091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.
    Poller JM; Zaloga J; Schreiber E; Unterweger H; Janko C; Radon P; Eberbeck D; Trahms L; Alexiou C; Friedrich RP
    Int J Nanomedicine; 2017; 12():3207-3220. PubMed ID: 28458541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.
    Shevtsov MA; Nikolaev BP; Yakovleva LY; Marchenko YY; Dobrodumov AV; Mikhrina AL; Martynova MG; Bystrova OA; Yakovenko IV; Ischenko AM
    Int J Nanomedicine; 2014; 9():273-87. PubMed ID: 24421639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques.
    Wu Q; Pan W; Wu G; Wu F; Guo Y; Zhang X
    Atherosclerosis; 2023 Mar; 369():17-26. PubMed ID: 36863196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically responsive layer-by-layer microcapsules can be retained in cells and under flow conditions to promote local drug release without triggering ROS production.
    Read JE; Luo D; Chowdhury TT; Flower RJ; Poston RN; Sukhorukov GB; Gould DJ
    Nanoscale; 2020 Apr; 12(14):7735-7748. PubMed ID: 32211625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques.
    Finn AV; Nakano M; Polavarapu R; Karmali V; Saeed O; Zhao X; Yazdani S; Otsuka F; Davis T; Habib A; Narula J; Kolodgie FD; Virmani R
    J Am Coll Cardiol; 2012 Jan; 59(2):166-77. PubMed ID: 22154776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization.
    Wagner S; Schnorr J; Ludwig A; Stangl V; Ebert M; Hamm B; Taupitz M
    Int J Nanomedicine; 2013; 8():767-79. PubMed ID: 23450179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.
    Unterweger H; Janko C; Schwarz M; Dézsi L; Urbanics R; Matuszak J; Őrfi E; Fülöp T; Bäuerle T; Szebeni J; Journé C; Boccaccini AR; Alexiou C; Lyer S; Cicha I
    Int J Nanomedicine; 2017; 12():5223-5238. PubMed ID: 28769560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.