These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30588506)

  • 1. Evaluation of Virtual Reality for Detection of Lung Nodules on Computed Tomography.
    Nguyen BJ; Khurana A; Bagley B; Yen A; Brown RKJ; Stojanovska J; Cline M; Goodsitt M; Obrzut S
    Tomography; 2018 Dec; 4(4):204-208. PubMed ID: 30588506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulmonary nodules: sensitivity of maximum intensity projection versus that of volume rendering of 3D multidetector CT data.
    Peloschek P; Sailer J; Weber M; Herold CJ; Prokop M; Schaefer-Prokop C
    Radiology; 2007 May; 243(2):561-9. PubMed ID: 17456878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal subtraction method for lung nodule detection on successive thoracic CT soft-copy images.
    Aoki T; Murakami S; Kim H; Fujii M; Takahashi H; Oki H; Hayashida Y; Katsuragawa S; Shiraishi J; Korogi Y
    Radiology; 2014 Apr; 271(1):255-61. PubMed ID: 24475812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual reading room for diagnostic radiology.
    Mustafa AR; Moloudi F; Balasalle E; Lang M; Uppot RN
    Curr Probl Diagn Radiol; 2024; 53(2):230-234. PubMed ID: 38245428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study.
    Narita A; Ohkubo M; Murao K; Matsumoto T; Wada S
    Med Phys; 2017 Oct; 44(10):5303-5313. PubMed ID: 28777462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.
    Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K
    Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting Pulmonary Nodules in Lung Cancer Patients Using Whole Body FDG PET/CT, High-resolution Lung Reformat of FDG PET/CT, or Diagnostic Breath Hold Chest CT.
    Flavell RR; Behr SC; Mabray MC; Hernandez-Pampaloni M; Naeger DM
    Acad Radiol; 2016 Sep; 23(9):1123-9. PubMed ID: 27283073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on CT With a Computerized Pulmonary Vessel Suppressed Function.
    Lo SB; Freedman MT; Gillis LB; White CS; Mun SK
    AJR Am J Roentgenol; 2018 Mar; 210(3):480-488. PubMed ID: 29336601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small pulmonary nodules: effect of two computer-aided detection systems on radiologist performance.
    Das M; Mühlenbruch G; Mahnken AH; Flohr TG; Gündel L; Stanzel S; Kraus T; Günther RW; Wildberger JE
    Radiology; 2006 Nov; 241(2):564-71. PubMed ID: 17057074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided detection (CAD) in lung cancer screening at chest MDCT: ROC analysis of CAD versus radiologist performance.
    Fraioli F; Bertoletti L; Napoli A; Pediconi F; Calabrese FA; Masciangelo R; Catalano C; Passariello R
    J Thorac Imaging; 2007 Aug; 22(3):241-6. PubMed ID: 17721333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis.
    Nagatani Y; Takahashi M; Murata K; Ikeda M; Yamashiro T; Miyara T; Koyama H; Koyama M; Sato Y; Moriya H; Noma S; Tomiyama N; Ohno Y; Murayama S;
    Eur J Radiol; 2015 Jul; 84(7):1401-12. PubMed ID: 25892051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of 1D, 2D, and 3D nodule sizing methods by radiologists for spherical and complex nodules on thoracic CT phantom images.
    Petrick N; Kim HJ; Clunie D; Borradaile K; Ford R; Zeng R; Gavrielides MA; McNitt-Gray MF; Lu ZQ; Fenimore C; Zhao B; Buckler AJ
    Acad Radiol; 2014 Jan; 21(1):30-40. PubMed ID: 24331262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of image quality, radiologists, lung segments, and Gunnar eyewear on detectability of lung nodules in chest CT.
    Christe A; Ebner L; Steiger P; Parikh SR; Shah AD; Roychoudhury K; Vock P; Roos JE
    Acta Radiol; 2013 Jul; 54(6):646-51. PubMed ID: 23612429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
    Cascio D; Magro R; Fauci F; Iacomi M; Raso G
    Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT.
    Robins M; Solomon J; Sahbaee P; Sedlmair M; Roy Choudhury K; Pezeshk A; Sahiner B; Samei E
    Phys Med Biol; 2017 Aug; 62(18):7280-7299. PubMed ID: 28786399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic performance of a commercially available computer-aided diagnosis system for automatic detection of pulmonary nodules: comparison with single and double reading.
    Wormanns D; Beyer F; Diederich S; Ludwig K; Heindel W
    Rofo; 2004 Jul; 176(7):953-8. PubMed ID: 15237336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network ensemble-based computer-aided diagnosis for differentiation of lung nodules on CT images: clinical evaluation.
    Chen H; Xu Y; Ma Y; Ma B
    Acad Radiol; 2010 May; 17(5):595-602. PubMed ID: 20167513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations in the functional visual field for detection of lung nodules on chest computed tomography: Impact of nodule size, distance, and local lung complexity.
    Ebner L; Tall M; Choudhury KR; Ly DL; Roos JE; Napel S; Rubin GD
    Med Phys; 2017 Jul; 44(7):3483-3490. PubMed ID: 28419484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing search, recognition, and decision in the detection of lung nodules on CT scans: elucidation with eye tracking.
    Rubin GD; Roos JE; Tall M; Harrawood B; Bag S; Ly DL; Seaman DM; Hurwitz LM; Napel S; Roy Choudhury K
    Radiology; 2015 Jan; 274(1):276-86. PubMed ID: 25325324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Institutional Evaluation of Digital Tomosynthesis, Dual-Energy Radiography, and Conventional Chest Radiography for the Detection and Management of Pulmonary Nodules.
    Dobbins JT; McAdams HP; Sabol JM; Chakraborty DP; Kazerooni EA; Reddy GP; Vikgren J; Båth M
    Radiology; 2017 Jan; 282(1):236-250. PubMed ID: 27439324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.