These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30588687)

  • 1. Spatial dynamics within and between brain functional domains: A hierarchical approach to study time-varying brain function.
    Iraji A; Fu Z; Damaraju E; DeRamus TP; Lewis N; Bustillo JR; Lenroot RK; Belger A; Ford JM; McEwen S; Mathalon DH; Mueller BA; Pearlson GD; Potkin SG; Preda A; Turner JA; Vaidya JG; van Erp TGM; Calhoun VD
    Hum Brain Mapp; 2019 Apr; 40(6):1969-1986. PubMed ID: 30588687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spatial chronnectome reveals a dynamic interplay between functional segregation and integration.
    Iraji A; Deramus TP; Lewis N; Yaesoubi M; Stephen JM; Erhardt E; Belger A; Ford JM; McEwen S; Mathalon DH; Mueller BA; Pearlson GD; Potkin SG; Preda A; Turner JA; Vaidya JG; van Erp TGM; Calhoun VD
    Hum Brain Mapp; 2019 Jul; 40(10):3058-3077. PubMed ID: 30884018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodel Order Independent Component Analysis: A Data-Driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales.
    Meng X; Iraji A; Fu Z; Kochunov P; Belger A; Ford J; McEwen S; Mathalon DH; Mueller BA; Pearlson G; Potkin SG; Preda A; Turner J; Erp TV; Sui J; Calhoun VD
    Brain Connect; 2022 Sep; 12(7):617-628. PubMed ID: 34541879
    [No Abstract]   [Full Text] [Related]  

  • 5. Relationship between Dynamic Blood-Oxygen-Level-Dependent Activity and Functional Network Connectivity: Characterization of Schizophrenia Subgroups.
    Long Q; Bhinge S; Calhoun VD; Adali T
    Brain Connect; 2021 Aug; 11(6):430-446. PubMed ID: 33724055
    [No Abstract]   [Full Text] [Related]  

  • 6. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns.
    Liu J; Liao X; Xia M; He Y
    Hum Brain Mapp; 2018 Feb; 39(2):902-915. PubMed ID: 29143409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph-theoretical analysis identifies transient spatial states of resting-state dynamic functional network connectivity and reveals dysconnectivity in schizophrenia.
    Long Q; Bhinge S; Calhoun VD; Adali T
    J Neurosci Methods; 2021 Feb; 350():109039. PubMed ID: 33370561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spatio-temporal decomposition framework for dynamic functional connectivity in the human brain.
    Xiao J; Uddin LQ; Meng Y; Li L; Gao L; Shan X; Huang X; Liao W; Chen H; Duan X
    Neuroimage; 2022 Nov; 263():119618. PubMed ID: 36087902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal trajectories in resting-state FMRI revealed by convolutional variational autoencoder.
    Zhang X; Maltbie EA; Keilholz SD
    Neuroimage; 2021 Dec; 244():118588. PubMed ID: 34607021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain.
    He C; Chen Y; Jian T; Chen H; Guo X; Wang J; Wu L; Chen H; Duan X
    Autism Res; 2018 Nov; 11(11):1479-1493. PubMed ID: 30270547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic regional phase synchrony (DRePS): An Instantaneous Measure of Local fMRI Connectivity Within Spatially Clustered Brain Areas.
    Omidvarnia A; Pedersen M; Walz JM; Vaughan DN; Abbott DF; Jackson GD
    Hum Brain Mapp; 2016 May; 37(5):1970-85. PubMed ID: 27019380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-brain electrophysiological functional connectivity dynamics in resting-state EEG.
    Shou G; Yuan H; Li C; Chen Y; Chen Y; Ding L
    J Neural Eng; 2020 Apr; 17(2):026016. PubMed ID: 32106106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
    Cheng L; Zhu Y; Sun J; Deng L; He N; Yang Y; Ling H; Ayaz H; Fu Y; Tong S
    Int J Neural Syst; 2018 Sep; 28(7):1850002. PubMed ID: 29607681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alzheimer's Disease Projection From Normal to Mild Dementia Reflected in Functional Network Connectivity: A Longitudinal Study.
    Sendi MSE; Zendehrouh E; Miller RL; Fu Z; Du Y; Liu J; Mormino EC; Salat DH; Calhoun VD
    Front Neural Circuits; 2020; 14():593263. PubMed ID: 33551754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery.
    Calhoun VD; Miller R; Pearlson G; Adalı T
    Neuron; 2014 Oct; 84(2):262-74. PubMed ID: 25374354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered Dynamic Functional Network Connectivity in Frontal Lobe Epilepsy.
    Klugah-Brown B; Luo C; He H; Jiang S; Armah GK; Wu Y; Li J; Yin W; Yao D
    Brain Topogr; 2019 May; 32(3):394-404. PubMed ID: 30255350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG.
    Lottman KK; Gawne TJ; Kraguljac NV; Killen JF; Reid MA; Lahti AC
    Neuroimage Clin; 2019; 24():101959. PubMed ID: 31377556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatial organization of the chronnectome associates with cortical hierarchy and transcriptional profiles in the human brain.
    Liu J; Xia M; Wang X; Liao X; He Y
    Neuroimage; 2020 Nov; 222():117296. PubMed ID: 32828922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale intrinsic connectivity is consistent across varying task demands.
    Kieliba P; Madugula S; Filippini N; Duff EP; Makin TR
    PLoS One; 2019; 14(4):e0213861. PubMed ID: 30970031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.