These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30588753)

  • 1. Human/robotic interaction: vision limits performance in simulated vitreoretinal surgery.
    de Smet MD; de Jonge N; Iannetta D; Faridpooya K; van Oosterhout E; Naus G; Meenink TCM; Mura M; Beelen MJ
    Acta Ophthalmol; 2019 Nov; 97(7):672-678. PubMed ID: 30588753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The learning curve of robot-assisted vitreoretinal surgery - A randomized trial in a simulated setting.
    Jacobsen MF; Konge L; la Cour M; Sørensen RB; Park YS; Thomsen ASS
    Acta Ophthalmol; 2021 Dec; 99(8):e1509-e1516. PubMed ID: 33650326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic Vitreoretinal Surgery.
    Channa R; Iordachita I; Handa JT
    Retina; 2017 Jul; 37(7):1220-1228. PubMed ID: 27893625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of robotic assistance on precision of vitreoretinal surgical procedures.
    Noda Y; Ida Y; Tanaka S; Toyama T; Roggia MF; Tamaki Y; Sugita N; Mitsuishi M; Ueta T
    PLoS One; 2013; 8(1):e54116. PubMed ID: 23335991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resident Participation and Patient Outcomes in Vitreoretinal Surgery.
    Tauscher RG; Lavine JA
    Ophthalmol Retina; 2021 Dec; 5(12):1283-1285. PubMed ID: 34217853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Robotic and OCT-Aided Systems for Vitreoretinal Surgery.
    Ahronovich EZ; Simaan N; Joos KM
    Adv Ther; 2021 May; 38(5):2114-2129. PubMed ID: 33813718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation training in vitreoretinal surgery: a systematic review.
    Rasmussen RC; Grauslund J; Vergmann AS
    BMC Ophthalmol; 2019 Apr; 19(1):90. PubMed ID: 30975112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual vitreoretinal surgery: effect of distracting factors on surgical performance in medical students.
    Mellum ML; Vestergaard AH; Grauslund J; Vergmann AS
    Acta Ophthalmol; 2020 Jun; 98(4):378-383. PubMed ID: 31580012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RetiSurge - Enabling "Dry Lab" vitreoretinal surgical training during COVID-19 pandemic.
    Chhabra K; Khanna V; Vedachalam R; Sindal M
    Indian J Ophthalmol; 2021 Apr; 69(4):982-984. PubMed ID: 33727472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROBOT-ASSISTED VITREORETINAL SURGERY IMPROVES SURGICAL ACCURACY COMPARED WITH MANUAL SURGERY: A Randomized Trial in a Simulated Setting.
    Forslund Jacobsen M; Konge L; Alberti M; la Cour M; Park YS; Thomsen ASS
    Retina; 2020 Nov; 40(11):2091-2098. PubMed ID: 31842191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of Weight-Adjusted Caffeine and β-Blocker Use With Ophthalmology Fellow Performance During Simulated Vitreoretinal Microsurgery.
    Roizenblatt M; Dias Gomes Barrios Marin V; Grupenmacher AT; Muralha F; Faber J; Jiramongkolchai K; Gehlbach PL; Farah ME; Belfort R; Maia M
    JAMA Ophthalmol; 2020 Aug; 138(8):819-825. PubMed ID: 32525517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotics in Vitreo-Retinal Surgery.
    Ramamurthy SR; Dave VP
    Semin Ophthalmol; 2022; 37(7-8):795-800. PubMed ID: 35576476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tele-surgery simulation with a patient organ model for robotic surgery training.
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Konishi K; Kakeji Y; Hashizume M
    Int J Med Robot; 2005 Dec; 1(4):80-8. PubMed ID: 17518408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE INTEGRATIVE SURGICAL THEATER: Combining Intraoperative Optical Coherence Tomography and 3D Digital Visualization for Vitreoretinal Surgery in the DISCOVER Study.
    Ehlers JP; Uchida A; Srivastava SK
    Retina; 2018 Sep; 38 Suppl 1(Suppl 1):S88-S96. PubMed ID: 29256988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence, Digital Imaging, and Robotics Technologies for Surgical Vitreoretinal Diseases.
    Poh SSJ; Sia JT; Yip MYT; Tsai ASH; Lee SY; Tan GSW; Weng CY; Kadonosono K; Kim M; Yonekawa Y; Ho AC; Toth CA; Ting DSW
    Ophthalmol Retina; 2024 Jul; 8(7):633-645. PubMed ID: 38280425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EYESI surgical simulator: validity evidence of the vitreoretinal modules.
    Cissé C; Angioi K; Luc A; Berrod JP; Conart JB
    Acta Ophthalmol; 2019 Mar; 97(2):e277-e282. PubMed ID: 30168257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental and clinical study on the initial experiences of Brazilian vitreoretinal surgeons with heads-up surgery.
    Palácios RM; de Carvalho ACM; Maia M; Caiado RR; Camilo DAG; Farah ME
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):473-483. PubMed ID: 30645695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitreoretinal surgery fellowship training and the big disconnect: is it just a numbers game?
    Williams GA
    Retina; 2013 Feb; 33(2):263-4. PubMed ID: 23114409
    [No Abstract]   [Full Text] [Related]  

  • 19. Transferability of Virtual Reality, Simulation-Based, Robotic Suturing Skills to a Live Porcine Model in Novice Surgeons: A Single-Blind Randomized Controlled Trial.
    Vargas MV; Moawad G; Denny K; Happ L; Misa NY; Margulies S; Opoku-Anane J; Abi Khalil E; Marfori C
    J Minim Invasive Gynecol; 2017; 24(3):420-425. PubMed ID: 28027975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is there inter-procedural transfer of skills in intraocular surgery? A randomized controlled trial.
    Thomsen ASS; Kiilgaard JF; la Cour M; Brydges R; Konge L
    Acta Ophthalmol; 2017 Dec; 95(8):845-851. PubMed ID: 28371367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.