BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30589052)

  • 1. Probing pathway-related modules in invasive squamous cervical cancer based on topological centrality of network strategy.
    Fu XH; Wu YF; Xue F
    J Cancer Res Ther; 2018; 14(7):1638-1643. PubMed ID: 30589052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of pathway-related modules in high-grade osteosarcoma based on topological centrality of network strategy.
    Ning B; Xu DL; Gao JH; Wang LL; Yan SY; Cheng S
    Eur Rev Med Pharmacol Sci; 2016 Jun; 20(11):2209-20. PubMed ID: 27338044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentially expressed EREG and SPP1 are independent prognostic markers in cervical squamous cell carcinoma.
    Zhang L; Nan F; Yang L; Dong Y; Tian Y
    J Obstet Gynaecol Res; 2022 Jul; 48(7):1848-1858. PubMed ID: 35491469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Key Genes and Pathways in Tongue Squamous Cell Carcinoma Using Bioinformatics Analysis.
    Zhang H; Liu J; Fu X; Yang A
    Med Sci Monit; 2017 Dec; 23():5924-5932. PubMed ID: 29240723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Key Genes in Association with Progression and Prognosis in Cervical Squamous Cell Carcinoma.
    Meng H; Liu J; Qiu J; Nie S; Jiang Y; Wan Y; Cheng W
    DNA Cell Biol; 2020 May; 39(5):848-863. PubMed ID: 32202912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis.
    Xu Z; Jiang P; He S
    Med Sci Monit; 2019 Dec; 25():9216-9226. PubMed ID: 31794546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis.
    Hu S; Liao Y; Chen L
    Med Sci Monit; 2018 Sep; 24():6438-6448. PubMed ID: 30213925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological centrality-based identification of hub genes and pathways associated with acute viral respiratory infection in infants.
    Liu XY; Li GQ; Ma Y; Zhao LJ
    Genet Mol Res; 2015 Dec; 14(4):18334-43. PubMed ID: 26782481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of EPHX2 and RMI2 as two novel key genes in cervical squamous cell carcinoma by an integrated bioinformatic analysis.
    Liu J; Nie S; Gao M; Jiang Y; Wan Y; Ma X; Zhou S; Cheng W
    J Cell Physiol; 2019 Nov; 234(11):21260-21273. PubMed ID: 31041817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Key Biomarkers and Potential Molecular Mechanisms in Oral Squamous Cell Carcinoma by Bioinformatics Analysis.
    Yang B; Dong K; Guo P; Guo P; Jie G; Zhang G; Li T
    J Comput Biol; 2020 Jan; 27(1):40-54. PubMed ID: 31424263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic.
    Hasankhani A; Bahrami A; Sheybani N; Aria B; Hemati B; Fatehi F; Ghaem Maghami Farahani H; Javanmard G; Rezaee M; Kastelic JP; Barkema HW
    Front Immunol; 2021; 12():789317. PubMed ID: 34975885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Key Genes and Pathways in Cervical Cancer by Bioinformatics Analysis.
    Wu X; Peng L; Zhang Y; Chen S; Lei Q; Li G; Zhang C
    Int J Med Sci; 2019; 16(6):800-812. PubMed ID: 31337953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm.
    Gholaminejad A; Fathalipour M; Roointan A
    BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Analysis of Hub Genes and Pathways In Esophageal Carcinoma Based on NCBI's Gene Expression Omnibus (GEO) Database: A Bioinformatics Analysis.
    Yu-Jing T; Wen-Jing T; Biao T
    Med Sci Monit; 2020 Aug; 26():e923934. PubMed ID: 32756534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Molecular Mechanisms Analysis of Three Lung Cancer Subtypes Based on Gene Expression Profiles.
    Wang L; Pei Y; Li S; Zhang S; Yang Y
    J Comput Biol; 2019 Oct; 26(10):1140-1155. PubMed ID: 31305128
    [No Abstract]   [Full Text] [Related]  

  • 19. Screening of biomarkers in cervical squamous cell carcinomas via gene expression profiling.
    Chen B; Li C; Zhang L; Lv J; Tong Y
    Mol Med Rep; 2015 Nov; 12(5):6985-9. PubMed ID: 26398134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling.
    Lu C; Chen H; Shan Z; Yang L
    Mol Med Rep; 2016 Aug; 14(2):1483-90. PubMed ID: 27356570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.