These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 30589081)
1. Impact of tetramerization on the ligand recognition of N1 influenza neuraminidase via MMGBSA approach. Bello M Biopolymers; 2019 May; 110(5):e23251. PubMed ID: 30589081 [TBL] [Abstract][Full Text] [Related]
2. The binding properties of the H5N1 influenza virus neuraminidase as inferred from molecular modeling. Raab M; Tvaroška I J Mol Model; 2011 Jun; 17(6):1445-56. PubMed ID: 20853123 [TBL] [Abstract][Full Text] [Related]
4. Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses. Singh A; Soliman ME Drug Des Devel Ther; 2015; 9():4137-54. PubMed ID: 26257512 [TBL] [Abstract][Full Text] [Related]
5. Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase. Kar P; Knecht V J Phys Chem B; 2012 May; 116(21):6137-49. PubMed ID: 22553951 [TBL] [Abstract][Full Text] [Related]
6. Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. Du W; Dai M; Li Z; Boons GJ; Peeters B; van Kuppeveld FJM; de Vries E; de Haan CAM J Virol; 2018 Oct; 92(20):. PubMed ID: 30089692 [TBL] [Abstract][Full Text] [Related]
7. N1 neuraminidase of H5N1 avian influenza A virus complexed with sialic acid and zanamivir - A study by molecular docking and molecular dynamics simulation. Jeyaram RA; Anu Radha C J Biomol Struct Dyn; 2022; 40(21):11434-11447. PubMed ID: 34369311 [TBL] [Abstract][Full Text] [Related]
8. Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy. Lawrenz M; Wereszczynski J; Amaro R; Walker R; Roitberg A; McCammon JA Proteins; 2010 Aug; 78(11):2523-32. PubMed ID: 20602360 [TBL] [Abstract][Full Text] [Related]
9. A Computational Model for Docking of Noncompetitive Neuraminidase Inhibitors and Probing their Binding Interactions with Neuraminidase of Influenza Virus H5N1. Chintakrindi AS; Martis EA; Gohil DJ; Kothari ST; Chowdhary AS; Coutinho EC; Kanyalkar MA Curr Comput Aided Drug Des; 2016; 12(4):272-281. PubMed ID: 27412704 [TBL] [Abstract][Full Text] [Related]
10. Dynamic behavior of avian influenza A virus neuraminidase subtype H5N1 in complex with oseltamivir, zanamivir, peramivir, and their phosphonate analogues. Udommaneethanakit T; Rungrotmongkol T; Bren U; Frecer V; Stanislav M J Chem Inf Model; 2009 Oct; 49(10):2323-32. PubMed ID: 19780597 [TBL] [Abstract][Full Text] [Related]
11. Theoretical studies on the susceptibility of oseltamivir against variants of 2009 A/H1N1 influenza neuraminidase. Li L; Li Y; Zhang L; Hou T J Chem Inf Model; 2012 Oct; 52(10):2715-29. PubMed ID: 22998323 [TBL] [Abstract][Full Text] [Related]
12. Novel binding patterns between ganoderic acids and neuraminidase: Insights from docking, molecular dynamics and MM/PBSA studies. Yang Z; Wu F; Yuan X; Zhang L; Zhang S J Mol Graph Model; 2016 Apr; 65():27-34. PubMed ID: 26905206 [TBL] [Abstract][Full Text] [Related]
13. [Virological impact of stalk region of neuraminidase in influenza A/Anhui/1/05 (H5N1) and A/Ohio/07/2009 (H1N1) viruses]. Wu J; Wang T; Zhang L; Ye ZH; Lv JX Bing Du Xue Bao; 2014 May; 30(3):238-45. PubMed ID: 25118377 [TBL] [Abstract][Full Text] [Related]
14. Source of oseltamivir resistance in avian influenza H5N1 virus with the H274Y mutation. Malaisree M; Rungrotmongkol T; Nunthaboot N; Aruksakunwong O; Intharathep P; Decha P; Sompornpisut P; Hannongbua S Amino Acids; 2009 Oct; 37(4):725-32. PubMed ID: 19002747 [TBL] [Abstract][Full Text] [Related]
15. Neuraminidase amino acids 149 and 347 determine the infectivity and oseltamivir sensitivity of pandemic influenza A/H1N1 (2009) and avian influenza A/H5N1. Yongkiettrakul S; Nivitchanyong T; Pannengpetch S; Wanitchang A; Jongkaewwattana A; Srimanote P Virus Res; 2013 Aug; 175(2):128-33. PubMed ID: 23639424 [TBL] [Abstract][Full Text] [Related]
16. Molecular modeling studies demonstrate key mutations that could affect the ligand recognition by influenza AH1N1 neuraminidase. Ramírez-Salinas GL; García-Machorro J; Quiliano M; Zimic M; Briz V; Rojas-Hernández S; Correa-Basurto J J Mol Model; 2015 Nov; 21(11):292. PubMed ID: 26499499 [TBL] [Abstract][Full Text] [Related]
17. Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. Amaro RE; Cheng X; Ivanov I; Xu D; McCammon JA J Am Chem Soc; 2009 Apr; 131(13):4702-9. PubMed ID: 19296611 [TBL] [Abstract][Full Text] [Related]
18. Induced opening of influenza virus neuraminidase N2 150-loop suggests an important role in inhibitor binding. Wu Y; Qin G; Gao F; Liu Y; Vavricka CJ; Qi J; Jiang H; Yu K; Gao GF Sci Rep; 2013; 3():1551. PubMed ID: 23531861 [TBL] [Abstract][Full Text] [Related]
19. Selective binding of antiinfluenza drugs and their analogues to 'open' and 'closed' conformations of H5N1 neuraminidase. Wang P; Zhang JZ J Phys Chem B; 2010 Oct; 114(40):12958-64. PubMed ID: 20860351 [TBL] [Abstract][Full Text] [Related]
20. Long time scale GPU dynamics reveal the mechanism of drug resistance of the dual mutant I223R/H275Y neuraminidase from H1N1-2009 influenza virus. Woods CJ; Malaisree M; Pattarapongdilok N; Sompornpisut P; Hannongbua S; Mulholland AJ Biochemistry; 2012 May; 51(21):4364-75. PubMed ID: 22574858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]