These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30589113)

  • 1. Self-Assembled Networked PbS Distribution Quantum Dots for Resistive Switching and Artificial Synapse Performance Boost of Memristors.
    Yan X; Pei Y; Chen H; Zhao J; Zhou Z; Wang H; Zhang L; Wang J; Li X; Qin C; Wang G; Xiao Z; Zhao Q; Wang K; Li H; Ren D; Liu Q; Zhou H; Chen J; Zhou P
    Adv Mater; 2019 Feb; 31(7):e1805284. PubMed ID: 30589113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Dots for Resistive Switching Memory and Artificial Synapse.
    Kim G; Park S; Kim S
    Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Ag/ZrO
    Yan X; Qin C; Lu C; Zhao J; Zhao R; Ren D; Zhou Z; Wang H; Wang J; Zhang L; Li X; Pei Y; Wang G; Zhao Q; Wang K; Xiao Z; Li H
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48029-48038. PubMed ID: 31789034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carbon-based memristor design for associative learning activities and neuromorphic computing.
    Pei Y; Zhou Z; Chen AP; Chen J; Yan X
    Nanoscale; 2020 Jul; 12(25):13531-13539. PubMed ID: 32555882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlow Power Consumption Artificial Synapses Based on WSe
    Wang Z; Wang W; Liu P; Liu G; Li J; Zhao J; Zhou Z; Wang J; Pei Y; Zhao Z; Li J; Wang L; Jian Z; Wang Y; Guo J; Yan X
    Research (Wash D C); 2022; 2022():9754876. PubMed ID: 36204247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance flexible resistive random-access memory based on SnS
    An H; Li Y; Ren Y; Wan Y; Wang W; Sun Z; Zhong J; Peng Z
    Nanoscale; 2024 Jun; 16(25):12142-12148. PubMed ID: 38832816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and investigation of quaternary Ag-In-Zn-S quantum dots-based memristors with ultralow power and multiple resistive switching behaviors.
    He N; Tao L; Zhang Q; Liu X; Lian X; Hu ET; Sheng Y; Xu F; Tong Y
    Nanotechnology; 2021 May; 32(19):195205. PubMed ID: 33540395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocrystal Materials for Resistive Memory and Artificial Synapses: Progress and Prospects.
    Chen Y; Chen D; Zhang C; Zhang X
    Recent Pat Nanotechnol; 2024; 18(2):237-255. PubMed ID: 37069716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching.
    Wang Y; Lv Z; Liao Q; Shan H; Chen J; Zhou Y; Zhou L; Chen X; Roy VAL; Wang Z; Xu Z; Zeng YJ; Han ST
    Adv Mater; 2018 Jul; 30(28):e1800327. PubMed ID: 29782667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eradicating negative-Set behavior of TiO
    Ismail M; Hashmi A; Rana AM; Kim S
    Nanotechnology; 2020 Aug; 31(32):325201. PubMed ID: 32316002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive switching modulation by incorporating thermally enhanced layer in HfO
    Li X; Feng Z; Zou J; Wu Z; Xu Z; Yang F; Zhu Y; Dai Y
    Nanotechnology; 2023 Nov; 35(3):. PubMed ID: 37852218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of Resistive Switching Performance in Sulfur-Doped HfOx-Based RRAM.
    Zhang Z; Wang F; Hu K; She Y; Song S; Song Z; Zhang K
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiferroelectric Heterostructures Memristors with Unique Resistive Switching Mechanisms and Properties.
    Yang MH; Wang CH; Lai YH; Wang CH; Chen YJ; Chen JY; Chu YH; Wu WW
    Nano Lett; 2024 Sep; 24(37):11482-11489. PubMed ID: 39158148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic Conductive Filament Formation and Evolution for Improved Switching Uniformity in Embedded Metal-Oxide-Based Memristors─A Phase-Field Study.
    Zhang K; Ganesh P; Cao Y
    ACS Appl Mater Interfaces; 2023 May; 15(17):21219-21227. PubMed ID: 37083295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuInS
    Sharma H; Saini N; Lalita ; Kaushik D; Kumar A; Srivastava R
    RSC Adv; 2024 May; 14(21):14910-14918. PubMed ID: 38716108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching.
    Sun Y; Song C; Yin J; Chen X; Wan Q; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34064-34070. PubMed ID: 28901743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boost of the Bio-memristor Performance for Artificial Electronic Synapses by Surface Reconstruction.
    Wang J; Shi C; Sushko ML; Lan J; Sun K; Zhao J; Liu X; Yan X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39641-39651. PubMed ID: 34374517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of Cu-Doping on the Performance of La-Based RRAM Devices.
    Wang Y; Liu H; Wang X; Zhao L
    Nanoscale Res Lett; 2019 Jul; 14(1):224. PubMed ID: 31289960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Achievement of Complementary Resistive Switching in Block Copolymer Micelle-Based Resistive Memories.
    Choi HH; Kim HJ; Oh J; Kim M; Kim Y; Jho JY; Lee KH; Son JG; Park JH
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100686. PubMed ID: 35084074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Power Resistive Switching Characteristic in HfO
    Ding X; Feng Y; Huang P; Liu L; Kang J
    Nanoscale Res Lett; 2019 May; 14(1):157. PubMed ID: 31073774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.