These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 30589143)
1. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Chen Y; Hoehenwarter W Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143 [TBL] [Abstract][Full Text] [Related]
2. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
3. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis. Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551 [TBL] [Abstract][Full Text] [Related]
4. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification. Chen Y; Liang X Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049 [TBL] [Abstract][Full Text] [Related]
5. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells. Henry M; Coleman O; Prashant ; Clynes M; Meleady P Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132 [TBL] [Abstract][Full Text] [Related]
6. TIMAHAC: Streamlined Tandem IMAC-HILIC Workflow for Simultaneous and High-Throughput Plant Phosphoproteomics and N-glycoproteomics. Chen CW; Lin PY; Lai YM; Lin MH; Lin SY; Hsu CC Mol Cell Proteomics; 2024 May; 23(5):100762. PubMed ID: 38608839 [TBL] [Abstract][Full Text] [Related]
7. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Hoehenwarter W; Thomas M; Nukarinen E; Egelhofer V; Röhrig H; Weckwerth W; Conrath U; Beckers GJ Mol Cell Proteomics; 2013 Feb; 12(2):369-80. PubMed ID: 23172892 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Phosphorylated Proteins Using Mass Spectrometry. Yu LR; Veenstra TD Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146 [TBL] [Abstract][Full Text] [Related]
9. Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. Lan P; Li W; Wen TN; Schmidt W Plant Physiol; 2012 May; 159(1):403-17. PubMed ID: 22438062 [TBL] [Abstract][Full Text] [Related]
10. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Han G; Ye M; Zou H Analyst; 2008 Sep; 133(9):1128-38. PubMed ID: 18709185 [TBL] [Abstract][Full Text] [Related]
11. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032 [TBL] [Abstract][Full Text] [Related]
12. Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. de la Fuente van Bentem S; Anrather D; Roitinger E; Djamei A; Hufnagl T; Barta A; Csaszar E; Dohnal I; Lecourieux D; Hirt H Nucleic Acids Res; 2006; 34(11):3267-78. PubMed ID: 16807317 [TBL] [Abstract][Full Text] [Related]
13. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry. Hsu CC; Xue L; Arrington JV; Wang P; Paez Paez JS; Zhou Y; Zhu JK; Tao WA J Am Soc Mass Spectrom; 2017 Jun; 28(6):1127-1135. PubMed ID: 28283928 [TBL] [Abstract][Full Text] [Related]
14. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae. Oh Y; Franck WL; Dean RA Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the phosphoproteome of mature Arabidopsis pollen. Mayank P; Grossman J; Wuest S; Boisson-Dernier A; Roschitzki B; Nanni P; Nühse T; Grossniklaus U Plant J; 2012 Oct; 72(1):89-101. PubMed ID: 22631563 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analysis of global phosphorylation changes with high-resolution tandem mass spectrometry and stable isotopic labeling. Kweon HK; Andrews PC Methods; 2013 Jun; 61(3):251-9. PubMed ID: 23611819 [TBL] [Abstract][Full Text] [Related]
17. [Affinity chromatography based phosphoproteome research on lung cancer cells and its application]. Zhang B; Wang C; Guo M; Xiao H Se Pu; 2021 Jan; 39(1):77-86. PubMed ID: 34227361 [TBL] [Abstract][Full Text] [Related]
18. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Wolschin F; Wienkoop S; Weckwerth W Proteomics; 2005 Nov; 5(17):4389-97. PubMed ID: 16222723 [TBL] [Abstract][Full Text] [Related]
19. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. Low TY; Mohtar MA; Lee PY; Omar N; Zhou H; Ye M Mass Spectrom Rev; 2021 Jul; 40(4):309-333. PubMed ID: 32491218 [TBL] [Abstract][Full Text] [Related]
20. Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. Choi H; Lee S; Jun CD; Park ZY J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2991-7. PubMed ID: 21930439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]