These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3058931)

  • 1. Aliphatic polyesters and cellulose-based polymers for controlled release applications.
    Chang RK; Price JC
    J Biomater Appl; 1988 Jul; 3(1):80-101. PubMed ID: 3058931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic biodegradable polyesters for implantable controlled-release devices.
    Pothupitiya JU; Zheng C; Saltzman WM
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1351-1364. PubMed ID: 36197839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering.
    Natarajan J; Movva S; Madras G; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():534-547. PubMed ID: 28532063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity.
    Dasgupta Q; Madras G; Chatterjee K
    Acta Biomater; 2016 Jan; 30():168-176. PubMed ID: 26596566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review.
    Stepanova M; Korzhikova-Vlakh E
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications.
    van Dijkhuizen-Radersma R; Roosma JR; Kaim P; Métairie S; Péters FL; de Wijn J; Zijlstra PG; de Groot K; Bezemer JM
    J Biomed Mater Res A; 2003 Dec; 67(4):1294-304. PubMed ID: 14624516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synthesis of biodegradable graft copolymer cellulose-graft-poly(L-lactide) and the study of its controlled drug release.
    Dong H; Xu Q; Li Y; Mo S; Cai S; Liu L
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):26-33. PubMed ID: 18583109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solutions as solutions--synthesis and use of a liquid polyester excipient to dissolve lipophilic drugs and formulate sustained-release parenterals.
    Asmus LR; Gurny R; Möller M
    Eur J Pharm Biopharm; 2011 Nov; 79(3):584-91. PubMed ID: 21820511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and evaluation of ocular drug delivery system for controlled delivery of gatifloxacin sesquehydrate: In vitro and in vivo evaluation.
    Patel UL; Chotai NP; Nagda CD
    Pharm Dev Technol; 2012; 17(1):15-22. PubMed ID: 20649410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications.
    Seppälä J; Korhonen H; Hakala R; Malin M
    Macromol Biosci; 2011 Dec; 11(12):1647-52. PubMed ID: 22052651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro release of new quinolones from biodegradable systems: a comparative study.
    Andreopoulos AG; Korakis T; Dounis E; Anastasiadis A; Tzivelekis P; Kanellakopoulou K
    J Biomater Appl; 1996 Apr; 10(4):338-47. PubMed ID: 8859405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion.
    Verhoeven E; De Beer TR; Van den Mooter G; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2008 May; 69(1):312-9. PubMed ID: 18036793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmaceutically used polymers: principles, structures, and applications of pharmaceutical delivery systems.
    Khandare J; Haag R
    Handb Exp Pharmacol; 2010; (197):221-50. PubMed ID: 20217532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current advances in sustained-release systems for parenteral drug delivery.
    Shi Y; Li LC
    Expert Opin Drug Deliv; 2005 Nov; 2(6):1039-58. PubMed ID: 16296808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties.
    Jalil R; Nixon JR
    J Microencapsul; 1990; 7(3):297-325. PubMed ID: 2200861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism.
    Babasola IO; Zhang W; Amsden BG
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):765-72. PubMed ID: 23665446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer blends for controlled release coatings.
    Siepmann F; Siepmann J; Walther M; MacRae RJ; Bodmeier R
    J Control Release; 2008 Jan; 125(1):1-15. PubMed ID: 18022722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters.
    Dasgupta Q; Chatterjee K; Madras G
    Mol Pharm; 2015 Sep; 12(9):3479-89. PubMed ID: 26284981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.