These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30589546)

  • 1. Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn-Sham Calculations.
    Mei Y; Li C; Su NQ; Yang W
    J Phys Chem A; 2019 Jan; 123(3):666-673. PubMed ID: 30589546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transfer excitation energies from ground state density functional theory calculations.
    Mei Y; Yang W
    J Chem Phys; 2019 Apr; 150(14):144109. PubMed ID: 30981264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.
    Li J; Jin Y; Su NQ; Yang W
    J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density Functional Prediction of Quasiparticle, Excitation, and Resonance Energies of Molecules With a Global Scaling Correction Approach.
    Yang X; Zheng X; Yang W
    Front Chem; 2020; 8():588808. PubMed ID: 33425848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Consistent Calculation of the Localized Orbital Scaling Correction for Correct Electron Densities and Energy-Level Alignments in Density Functional Theory.
    Mei Y; Chen Z; Yang W
    J Phys Chem Lett; 2020 Dec; 11(23):10269-10277. PubMed ID: 33215928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional approximations for orbital energies and total energies of molecules and solids.
    Baerends EJ
    J Chem Phys; 2018 Aug; 149(5):054105. PubMed ID: 30089375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact Second-Order Corrections and Accurate Quasiparticle Energy Calculations in Density Functional Theory.
    Mei Y; Chen Z; Yang W
    J Phys Chem Lett; 2021 Aug; 12(30):7236-7244. PubMed ID: 34310157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital relaxation effects on Kohn-Sham frontier orbital energies in density functional theory.
    Zhang D; Zheng X; Li C; Yang W
    J Chem Phys; 2015 Apr; 142(15):154113. PubMed ID: 25903872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Describing polymer polarizability with localized orbital scaling correction in density functional theory.
    Mei Y; Yang N; Yang W
    J Chem Phys; 2021 Feb; 154(5):054302. PubMed ID: 33557560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved electronic excitation energies from shape-corrected semilocal Kohn-Sham potentials.
    Gaiduk AP; Firaha DS; Staroverov VN
    Phys Rev Lett; 2012 Jun; 108(25):253005. PubMed ID: 23004596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between Orbital Energies, Optical and Fundamental Gaps, and Exciton Shifts in Approximate Density Functional Theory and Quasiparticle Theory.
    Shu Y; Truhlar DG
    J Chem Theory Comput; 2020 Jul; 16(7):4337-4350. PubMed ID: 32453951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective one-particle energies from generalized Kohn-Sham random phase approximation: A direct approach for computing and analyzing core ionization energies.
    Voora VK; Galhenage R; Hemminger JC; Furche F
    J Chem Phys; 2019 Oct; 151(13):134106. PubMed ID: 31594336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning of Quasiparticle Energies in Molecules and Clusters.
    Çaylak O; Baumeier B
    J Chem Theory Comput; 2021 Aug; 17(8):4891-4900. PubMed ID: 34314186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn-Sham Potential.
    Amati M; Stoia S; Baerends EJ
    J Chem Theory Comput; 2020 Jan; 16(1):443-452. PubMed ID: 31794657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renormalized Singles Green's Function for Quasi-Particle Calculations beyond the G
    Jin Y; Su NQ; Yang W
    J Phys Chem Lett; 2019 Feb; 10(3):447-452. PubMed ID: 30609900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-State Potential Energy Surfaces, Conical Intersections, and Analytical Gradients from Ground-State Density Functional Theory.
    Mei Y; Yang W
    J Phys Chem Lett; 2019 May; 10(10):2538-2545. PubMed ID: 31038964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach.
    Baerends EJ
    Phys Chem Chem Phys; 2017 Jun; 19(24):15639-15656. PubMed ID: 28604864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized orbital scaling correction for periodic systems.
    Mahler A; Williams J; Su NQ; Yang W
    Phys Rev B; 2022 Jul; 106(3):. PubMed ID: 37727592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.