These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30589834)

  • 21. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains.
    Liwo A; Khalili M; Scheraga HA
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2362-7. PubMed ID: 15677316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental accuracy in protein structure refinement via molecular dynamics simulations.
    Heo L; Feig M
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13276-13281. PubMed ID: 30530696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coarse-Grained Molecular Dynamics Simulations of Membrane Proteins: A Practical Guide.
    Glass WG; Essex JW; Fraternali F; Gebbie-Rayet J; Marzuoli I; Samways ML; Biggin PC; Khalid S
    Methods Mol Biol; 2021; 2302():253-273. PubMed ID: 33877632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA folding pathways from all-atom simulations with a variationally improved history-dependent bias.
    Lazzeri G; Micheletti C; Pasquali S; Faccioli P
    Biophys J; 2023 Aug; 122(15):3089-3098. PubMed ID: 37355771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins.
    Liwo A; Khalili M; Czaplewski C; Kalinowski S; Ołdziej S; Wachucik K; Scheraga HA
    J Phys Chem B; 2007 Jan; 111(1):260-85. PubMed ID: 17201450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coarse-grained lattice model simulations of sequence-structure fitness of a ribosome-inactivating protein.
    Olson MA; Yeh IC; Lee MS
    Biopolymers; 2008 Feb; 89(2):153-9. PubMed ID: 17985366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MELD × MD Folds Nonthreadables, Giving Native Structures and Populations.
    Robertson JC; Perez A; Dill KA
    J Chem Theory Comput; 2018 Dec; 14(12):6734-6740. PubMed ID: 30407805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replica-Exchange Methods for Biomolecular Simulations.
    Sugita Y; Kamiya M; Oshima H; Re S
    Methods Mol Biol; 2019; 2022():155-177. PubMed ID: 31396903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice models, packing density, and Boltzmann-like distribution of cavities in proteins.
    Rashin AA; Rashin AH
    Proteins; 2005 Feb; 58(3):547-59. PubMed ID: 15624213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of protein force fields for molecular dynamics simulations.
    Guvench O; MacKerell AD
    Methods Mol Biol; 2008; 443():63-88. PubMed ID: 18446282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new pairwise folding potential based on improved decoy generation and side-chain packing.
    Loose C; Klepeis JL; Floudas CA
    Proteins; 2004 Feb; 54(2):303-14. PubMed ID: 14696192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-atom calculation of protein free-energy profiles.
    Orioli S; Ianeselli A; Spagnolli G; Faccioli P
    J Chem Phys; 2017 Oct; 147(15):152724. PubMed ID: 29055321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields.
    McDonagh JL; Shkurti A; Bray DJ; Anderson RL; Pyzer-Knapp EO
    J Chem Inf Model; 2019 Oct; 59(10):4278-4288. PubMed ID: 31549507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting protein dynamics from structural ensembles.
    Copperman J; Guenza MG
    J Chem Phys; 2015 Dec; 143(24):243131. PubMed ID: 26723616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-grained force fields for molecular simulations.
    Barnoud J; Monticelli L
    Methods Mol Biol; 2015; 1215():125-49. PubMed ID: 25330962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using SMOG 2 to Simulate Complex Biomolecular Assemblies.
    Levi M; Bandarkar P; Yang H; Wang A; Mohanty U; Noel JK; Whitford PC
    Methods Mol Biol; 2019; 2022():129-151. PubMed ID: 31396902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generating Protein Folding Trajectories Using Contact-Map-Driven Directed Walks.
    Fakhoury Z; Sosso GC; Habershon S
    J Chem Inf Model; 2023 Apr; 63(7):2181-2195. PubMed ID: 36995250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A component analysis of the free energies of folding of 35 proteins: A consensus view on the thermodynamics of folding at the molecular level.
    DasGupta D; Mandalaparthy V; Jayaram B
    J Comput Chem; 2017 Dec; 38(32):2791-2801. PubMed ID: 28940242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations.
    Noé F; Schütte C; Vanden-Eijnden E; Reich L; Weikl TR
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):19011-6. PubMed ID: 19887634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.