These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30589893)
1. Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. Kovářová J; Nagar R; Faria J; Ferguson MAJ; Barrett MP; Horn D PLoS Pathog; 2018 Dec; 14(12):e1007475. PubMed ID: 30589893 [TBL] [Abstract][Full Text] [Related]
2. The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis. Kovářová J; Moos M; Barrett MP; Horn D; Zíková A PLoS Negl Trop Dis; 2024 Feb; 18(2):e0012007. PubMed ID: 38394337 [TBL] [Abstract][Full Text] [Related]
3. Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions. Pineda E; Thonnus M; Mazet M; Mourier A; Cahoreau E; Kulyk H; Dupuy JW; Biran M; Masante C; Allmann S; Rivière L; Rotureau B; Portais JC; Bringaud F PLoS Pathog; 2018 Nov; 14(11):e1007412. PubMed ID: 30383867 [TBL] [Abstract][Full Text] [Related]
4. Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. Barrett MP; Tetaud E; Seyfang A; Bringaud F; Baltz T Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):687-91. PubMed ID: 8554506 [TBL] [Abstract][Full Text] [Related]
5. Oligomycin-sensitivity of hexose-sugar catabolism in the bloodstream form of Trypanosoma brucei brucei. Kiaira JK; Njogu MR Biotechnol Appl Biochem; 1994 Dec; 20(3):347-56. PubMed ID: 7818804 [TBL] [Abstract][Full Text] [Related]
6. Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Bringaud F; Baltz T Mol Cell Biol; 1993 Feb; 13(2):1146-54. PubMed ID: 8423781 [TBL] [Abstract][Full Text] [Related]
7. Evidence for glycerol 3-phosphate:glucose transphosphorylase activity in bloodstream Trypanosoma brucei brucei. Kiaira JK; Njogu RM Int J Biochem; 1989; 21(8):839-45. PubMed ID: 2555230 [TBL] [Abstract][Full Text] [Related]
8. Trypanosoma brucei brucei: the catabolism of glycolytic intermediates by digitonin-permeabilized bloodstream trypomastigotes and some aspects of regulation of anaerobic glycolysis. Kiaira JK; Njogu RM Int J Biochem; 1988; 20(10):1165-70. PubMed ID: 3248672 [TBL] [Abstract][Full Text] [Related]
9. Effects of various metabolic conditions and of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate and of glycolytic intermediates in Trypanosoma brucei. Van Schaftingen E; Opperdoes FR; Hers HG Eur J Biochem; 1987 Aug; 166(3):653-61. PubMed ID: 3038548 [TBL] [Abstract][Full Text] [Related]
10. Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. Wargnies M; Bertiaux E; Cahoreau E; Ziebart N; Crouzols A; Morand P; Biran M; Allmann S; Hubert J; Villafraz O; Millerioux Y; Plazolles N; Asencio C; Rivière L; Rotureau B; Boshart M; Portais JC; Bringaud F PLoS Pathog; 2018 Dec; 14(12):e1007502. PubMed ID: 30557412 [TBL] [Abstract][Full Text] [Related]
11. African trypanosome glucose transporter genes: organization and evolution of a multigene family. Bringaud F; Baltz T Mol Biol Evol; 1994 Mar; 11(2):220-30. PubMed ID: 8170363 [TBL] [Abstract][Full Text] [Related]
12. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux. Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470 [TBL] [Abstract][Full Text] [Related]
13. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. Creek DJ; Mazet M; Achcar F; Anderson J; Kim DH; Kamour R; Morand P; Millerioux Y; Biran M; Kerkhoven EJ; Chokkathukalam A; Weidt SK; Burgess KE; Breitling R; Watson DG; Bringaud F; Barrett MP PLoS Pathog; 2015 Mar; 11(3):e1004689. PubMed ID: 25775470 [TBL] [Abstract][Full Text] [Related]
14. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei. Cronín CN; Nolan DP; Voorheis HP FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907 [TBL] [Abstract][Full Text] [Related]
15. Glucose uptake in Trypanosoma vivax and molecular characterization of its transporter gene. Waitumbi JN; Tetaud E; Baltz T Eur J Biochem; 1996 Apr; 237(1):234-9. PubMed ID: 8620878 [TBL] [Abstract][Full Text] [Related]
17. Subcellular compartmentation of glycolytic intermediates in Trypanosoma brucei. Visser N; Opperdoes FR; Borst P Eur J Biochem; 1981 Sep; 118(3):521-6. PubMed ID: 7297560 [TBL] [Abstract][Full Text] [Related]
18. Role of glycerol permeation in the bloodstream form of Trypanosoma brucei. Gruenberg J; Schwendimann B; Sharma PR; Deshusses J J Protozool; 1980 Nov; 27(4):484-91. PubMed ID: 7218186 [TBL] [Abstract][Full Text] [Related]
19. Presence of a peculiar pathway of glucose metabolism in infective forms of Trypanosoma brucei cultured from salivary glands of tsetse flies. Njogu RM; Nyindo M J Parasitol; 1981 Dec; 67(6):847-51. PubMed ID: 7328458 [TBL] [Abstract][Full Text] [Related]
20. Functional characterization of three aquaglyceroporins from Trypanosoma brucei in osmoregulation and glycerol transport. Bassarak B; Uzcátegui NL; Schönfeld C; Duszenko M Cell Physiol Biochem; 2011; 27(3-4):411-20. PubMed ID: 21471730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]