These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30589982)

  • 1. Compounding effects of climate change reduce population viability of a montane amphibian.
    Kissel AM; Palen WJ; Ryan ME; Adams MJ
    Ecol Appl; 2019 Mar; 29(2):e01832. PubMed ID: 30589982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.
    Lee SY; Ryan ME; Hamlet AF; Palen WJ; Lawler JJ; Halabisky M
    PLoS One; 2015; 10(9):e0136385. PubMed ID: 26331850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future winters present a complex energetic landscape of decreased costs and reduced risk for a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus).
    Fitzpatrick MJ; Porter WP; Pauli JN; Kearney MR; Notaro M; Zuckerberg B
    Glob Chang Biol; 2020 Nov; 26(11):6350-6362. PubMed ID: 32871618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.
    Stevens JT; Latimer AM
    Glob Chang Biol; 2015 Jun; 21(6):2379-93. PubMed ID: 25482316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frog population viability under present and future climate conditions: a Bayesian state-space approach.
    McCaffery R; Solonen A; Crone E
    J Anim Ecol; 2012 Sep; 81(5):978-85. PubMed ID: 22574643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems.
    Templer PH; Reinmann AB; Sanders-DeMott R; Sorensen PO; Juice SM; Bowles F; Sofen LE; Harrison JL; Halm I; Rustad L; Martin ME; Grant N
    PLoS One; 2017; 12(2):e0171928. PubMed ID: 28207766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating copper toxicity and climate change to understand extinction risk to two species of pond-breeding anurans.
    Weir SM; Scott DE; Salice CJ; Lance SL
    Ecol Appl; 2016 Sep; 26(6):1721-1732. PubMed ID: 27755699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate warming mediates negative impacts of rapid pond drying for three amphibian species.
    O'Regan SM; Palen WJ; Anderson SC
    Ecology; 2014 Apr; 95(4):845-55. PubMed ID: 24933805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.
    Prevéy JS; Seastedt TR
    Oecologia; 2015 Nov; 179(3):765-75. PubMed ID: 26227366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winter forest soil respiration controlled by climate and microbial community composition.
    Monson RK; Lipson DL; Burns SP; Turnipseed AA; Delany AC; Williams MW; Schmidt SK
    Nature; 2006 Feb; 439(7077):711-4. PubMed ID: 16467835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drivers of climate change impacts on bird communities.
    Pearce-Higgins JW; Eglington SM; Martay B; Chamberlain DE
    J Anim Ecol; 2015 Jul; 84(4):943-54. PubMed ID: 25757576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A longer vernal window: the role of winter coldness and snowpack in driving spring transitions and lags.
    Contosta AR; Adolph A; Burchsted D; Burakowski E; Green M; Guerra D; Albert M; Dibb J; Martin M; McDowell WH; Routhier M; Wake C; Whitaker R; Wollheim W
    Glob Chang Biol; 2017 Apr; 23(4):1610-1625. PubMed ID: 27808458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).
    Anderson JT; Gezon ZJ
    Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water loss and temperature interact to compound amphibian vulnerability to climate change.
    Lertzman-Lepofsky GF; Kissel AM; Sinervo B; Palen WJ
    Glob Chang Biol; 2020 Sep; 26(9):4868-4879. PubMed ID: 32662211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change or climate cycles? Snowpack trends in the Olympic and Cascade Mountains, Washington, USA.
    Barry D; McDonald S
    Environ Monit Assess; 2013 Jan; 185(1):719-28. PubMed ID: 22411029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased winter severity increases viability of a montane frog population.
    McCaffery RM; Maxell BA
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8644-9. PubMed ID: 20421473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projecting the future of an alpine ungulate under climate change scenarios.
    White KS; Gregovich DP; Levi T
    Glob Chang Biol; 2018 Mar; 24(3):1136-1149. PubMed ID: 28973826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative snowpack response to elevation, temperature and precipitation in the Crown of the Continent region of North America 1980-2013.
    Broberg L
    PLoS One; 2021; 16(4):e0248736. PubMed ID: 33848296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park.
    McMenamin SK; Hadly EA; Wright CK
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):16988-93. PubMed ID: 18955700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.