These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30590085)

  • 21. Fixation-related Brain Potentials during Semantic Integration of Object-Scene Information.
    Coco MI; Nuthmann A; Dimigen O
    J Cogn Neurosci; 2020 Apr; 32(4):571-589. PubMed ID: 31765602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presaccadic EEG activity predicts visual saliency in free-viewing contour integration.
    Van Humbeeck N; Meghanathan RN; Wagemans J; van Leeuwen C; Nikolaev AR
    Psychophysiology; 2018 Dec; 55(12):e13267. PubMed ID: 30069911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refixation patterns reveal memory-encoding strategies in free viewing.
    Meghanathan RN; Nikolaev AR; van Leeuwen C
    Atten Percept Psychophys; 2019 Oct; 81(7):2499-2516. PubMed ID: 31044400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Planning to revisit: Neural activity in refixation precursors.
    Nikolaev AR; Ehinger BV; Meghanathan RN; van Leeuwen C
    J Vis; 2023 Jul; 23(7):2. PubMed ID: 37405737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eye fixation-related potentials (EFRPs) during object identification.
    Rämä P; Baccino T
    Vis Neurosci; 2010 Nov; 27(5-6):187-92. PubMed ID: 20939937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search.
    Adeli H; Vitu F; Zelinsky GJ
    J Neurosci; 2017 Feb; 37(6):1453-1467. PubMed ID: 28039373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural underpinnings of value-guided choice during auction tasks: An eye-fixation related potentials study.
    Tyson-Carr J; Soto V; Kokmotou K; Roberts H; Fallon N; Byrne A; Giesbrecht T; Stancak A
    Neuroimage; 2020 Jan; 204():116213. PubMed ID: 31542511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.
    Finke A; Essig K; Marchioro G; Ritter H
    PLoS One; 2016; 11(1):e0146848. PubMed ID: 26812487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural mechanisms of attention become more specialised during infancy: Insights from combined eye tracking and EEG.
    Kulke L; Atkinson J; Braddick O
    Dev Psychobiol; 2017 Mar; 59(2):250-260. PubMed ID: 27976814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scene and screen center bias early eye movements in scene viewing.
    Bindemann M
    Vision Res; 2010 Nov; 50(23):2577-87. PubMed ID: 20732344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining findings from gaze and electroencephalography recordings to study timing in a visual tracking task.
    Holth M; van der Meer AL; van der Weel FR
    Neuroreport; 2013 Dec; 24(17):968-72. PubMed ID: 24064410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural Correlates of Fixation Duration during Real-world Scene Viewing: Evidence from Fixation-related (FIRE) fMRI.
    Henderson JM; Choi W
    J Cogn Neurosci; 2015 Jun; 27(6):1137-45. PubMed ID: 25436668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Saccadic context indicates information processing within visual fixations: evidence from event-related potentials and eye-movements analysis of the distractor effect.
    Graupner ST; Pannasch S; Velichkovsky BM
    Int J Psychophysiol; 2011 Apr; 80(1):54-62. PubMed ID: 21291920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye movement-invariant representations in the human visual system.
    Nishimoto S; Huth AG; Bilenko NY; Gallant JL
    J Vis; 2017 Jan; 17(1):11. PubMed ID: 28114479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Right visual field advantage in parafoveal processing: evidence from eye-fixation-related potentials.
    Simola J; Holmqvist K; Lindgren M
    Brain Lang; 2009 Nov; 111(2):101-13. PubMed ID: 19782390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional selectivity in the human occipitotemporal cortex during natural vision: evidence from combined intracranial EEG and eye-tracking.
    Hamamé CM; Vidal JR; Perrone-Bertolotti M; Ossandón T; Jerbi K; Kahane P; Bertrand O; Lachaux JP
    Neuroimage; 2014 Jul; 95():276-86. PubMed ID: 24650595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociating parafoveal preview benefit and parafovea-on-fovea effects during reading: A combined eye tracking and EEG study.
    Niefind F; Dimigen O
    Psychophysiology; 2016 Dec; 53(12):1784-1798. PubMed ID: 27680711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eye movements and attention in reading, scene perception, and visual search.
    Rayner K
    Q J Exp Psychol (Hove); 2009 Aug; 62(8):1457-506. PubMed ID: 19449261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disentangling bottom-up versus top-down and low-level versus high-level influences on eye movements over time.
    Schütt HH; Rothkegel LOM; Trukenbrod HA; Engbert R; Wichmann FA
    J Vis; 2019 Mar; 19(3):1. PubMed ID: 30821809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.