BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30590144)

  • 1. Engineering of serine protease for improved thermostability and catalytic activity using rational design.
    Ashraf NM; Krishnagopal A; Hussain A; Kastner D; Sayed AMM; Mok YK; Swaminathan K; Zeeshan N
    Int J Biol Macromol; 2019 Apr; 126():229-237. PubMed ID: 30590144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution.
    Zhao HY; Feng H
    BMC Biotechnol; 2018 Jun; 18(1):34. PubMed ID: 29859069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Design of Nitrile Hydratase from
    Cheng Z; Lan Y; Guo J; Ma D; Jiang S; Lai Q; Zhou Z; Peplowski L
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.
    Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved catalytic properties of a serine hydroxymethyl transferase from Idiomarina loihiensis by site directed mutagenesis.
    Kumar A; Wu G; Wu Z; Kumar N; Liu Z
    Int J Biol Macromol; 2018 Oct; 117():1216-1223. PubMed ID: 29727646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design-based engineering of a thermostable phytase by site-directed mutagenesis.
    Fakhravar A; Hesampour A
    Mol Biol Rep; 2018 Dec; 45(6):2053-2061. PubMed ID: 30196454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic Mutagenesis and Semi-rational Engineering of Arginine Deiminase for Markedly Enhanced Stability and Catalytic Efficiency.
    Jamil S; Liu MH; Liu YM; Han RZ; Xu GC; Ni Y
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1335-50. PubMed ID: 26041055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability.
    Zhang H; Sang J; Zhang Y; Sun T; Liu H; Yue R; Zhang J; Wang H; Dai Y; Lu F; Liu F
    Int J Biol Macromol; 2019 Sep; 137():1190-1198. PubMed ID: 31299254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational engineering of a metalloprotease to enhance thermostability and activity.
    Zhu F; Li G; Wei P; Song C; Xu Q; Ma M; Ma J; Song P; Zhang S
    Enzyme Microb Technol; 2023 Jan; 162():110123. PubMed ID: 36115275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ion pair on thermostability of F1 protease: integration of computational and experimental approaches.
    Rahman RN; Muhd Noor ND; Ibrahim NA; Salleh AB; Basri M
    J Microbiol Biotechnol; 2012 Jan; 22(1):34-45. PubMed ID: 22297217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and immobilization of trypsin-like domain of serine protease from Pseudomonas aeruginosa for improved stability and catalytic activity.
    Mahmood MS; Asghar H; Riaz S; Shaukat I; Zeeshan N; Gul R; Ashraf NM; Saleem M
    Proteins; 2022 Jul; 90(7):1425-1433. PubMed ID: 35170816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing thermostability of a psychrophilic alpha-amylase by the structural energy optimization in the trajectories of molecular dynamics simulations.
    Li Q; Yan Y; Liu X; Zhang Z; Tian J; Wu N
    Int J Biol Macromol; 2020 Jan; 142():624-633. PubMed ID: 31622706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improving the thermostability of α-amylase from Rhizopus oryzae by rational design].
    Yang Q; Tang B; Li S
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1117-1127. PubMed ID: 30058310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement in Thermostability of an Achaetomium sp. Strain Xz8 Endopolygalacturonase via the Optimization of Charge-Charge Interactions.
    Tu T; Luo H; Meng K; Cheng Y; Ma R; Shi P; Huang H; Bai Y; Wang Y; Zhang L; Yao B
    Appl Environ Microbiol; 2015 Oct; 81(19):6938-44. PubMed ID: 26209675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the catalytic performance of a GH11 xylanase by rational protein engineering.
    Cheng YS; Chen CC; Huang JW; Ko TP; Huang Z; Guo RT
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9503-10. PubMed ID: 26088174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.