BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30590252)

  • 1. A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion.
    Park JS; Helble JD; Lazarus JE; Yang G; Blondel CJ; Doench JG; Starnbach MN; Waldor MK
    iScience; 2019 Jan; 11():71-84. PubMed ID: 30590252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens.
    Gasperini M; Hill AJ; McFaline-Figueroa JL; Martin B; Kim S; Zhang MD; Jackson D; Leith A; Schreiber J; Noble WS; Trapnell C; Ahituv N; Shendure J
    Cell; 2019 Jan; 176(1-2):377-390.e19. PubMed ID: 30612741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JACKS: joint analysis of CRISPR/Cas9 knockout screens.
    Allen F; Behan F; Khodak A; Iorio F; Yusa K; Garnett M; Parts L
    Genome Res; 2019 Mar; 29(3):464-471. PubMed ID: 30674557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-gene targeting and mismatch tolerance can confound analysis of genome-wide pooled CRISPR screens.
    Fortin JP; Tan J; Gascoigne KE; Haverty PM; Forrest WF; Costa MR; Martin SE
    Genome Biol; 2019 Jan; 20(1):21. PubMed ID: 30683138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation.
    Henriksson J; Chen X; Gomes T; Ullah U; Meyer KB; Miragaia R; Duddy G; Pramanik J; Yusa K; Lahesmaa R; Teichmann SA
    Cell; 2019 Feb; 176(4):882-896.e18. PubMed ID: 30639098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mixing heteroduplex mobility assay (mHMA) to genotype homozygous mutants with small indels generated by CRISPR-Cas9 nucleases.
    Foster SD; Glover SR; Turner AN; Chatti K; Challa AK
    MethodsX; 2019; 6():1-5. PubMed ID: 30591915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.
    Jiang F; Liu JJ; Osuna BA; Xu M; Berry JD; Rauch BJ; Nogales E; Bondy-Denomy J; Doudna JA
    Mol Cell; 2019 Feb; 73(3):601-610.e5. PubMed ID: 30595438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guide RNAs with embedded barcodes boost CRISPR-pooled screens.
    Zhu S; Cao Z; Liu Z; He Y; Wang Y; Yuan P; Li W; Tian F; Bao Y; Wei W
    Genome Biol; 2019 Jan; 20(1):20. PubMed ID: 30678704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method.
    Wang C; Wang K
    Methods Mol Biol; 2019; 1917():27-32. PubMed ID: 30610625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of CRISPR-Cas12b for human genome editing.
    Strecker J; Jones S; Koopal B; Schmid-Burgk J; Zetsche B; Gao L; Makarova KS; Koonin EV; Zhang F
    Nat Commun; 2019 Jan; 10(1):212. PubMed ID: 30670702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Report of
    Li Z; Liu P; Cao X; Lou Z; Zaręba-Marchewka K; Szymańska-Czerwińska M; Niemczuk K; Hu B; Bai X; Zhou J
    Biomed Res Int; 2018; 2018():4289648. PubMed ID: 30598995
    [No Abstract]   [Full Text] [Related]  

  • 12. CRISPR RNA-guided autonomous delivery of Cas9.
    Wilkinson RA; Martin C; Nemudryi AA; Wiedenheft B
    Nat Struct Mol Biol; 2019 Jan; 26(1):14-24. PubMed ID: 30598555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells.
    Zhang C; He X; Kwok YK; Wang F; Xue J; Zhao H; Suen KW; Wang CC; Ren J; Chen GG; Lai PBS; Li J; Xia Y; Chan AM; Chan WY; Feng B
    BMC Biol; 2018 Dec; 16(1):151. PubMed ID: 30593266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of high-precision base editors for site-specific single nucleotide replacement.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2019 Jan; 10(1):439. PubMed ID: 30683865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks.
    Balmus G; Pilger D; Coates J; Demir M; Sczaniecka-Clift M; Barros AC; Woods M; Fu B; Yang F; Chen E; Ostermaier M; Stankovic T; Ponstingl H; Herzog M; Yusa K; Martinez FM; Durant ST; Galanty Y; Beli P; Adams DJ; Bradley A; Metzakopian E; Forment JV; Jackson SP
    Nat Commun; 2019 Jan; 10(1):87. PubMed ID: 30622252
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Panzetta ME; Valdivia RH; Saka HA
    Front Microbiol; 2018; 9():3101. PubMed ID: 30619180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi.
    Peters JM; Koo BM; Patino R; Heussler GE; Hearne CC; Qu J; Inclan YF; Hawkins JS; Lu CHS; Silvis MR; Harden MM; Osadnik H; Peters JE; Engel JN; Dutton RJ; Grossman AD; Gross CA; Rosenberg OS
    Nat Microbiol; 2019 Feb; 4(2):244-250. PubMed ID: 30617347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iPSCs as a Platform for Disease Modeling, Drug Screening, and Personalized Therapy in Muscular Dystrophies.
    Ortiz-Vitali JL; Darabi R
    Cells; 2019 Jan; 8(1):. PubMed ID: 30609814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple Cloning-free Method to Efficiently Induce Gene Expression Using CRISPR/Cas9.
    Fang L; Hung SSC; Yek J; El Wazan L; Nguyen T; Khan S; Lim SY; Hewitt AW; Wong RCB
    Mol Ther Nucleic Acids; 2019 Mar; 14():184-191. PubMed ID: 30594894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing.
    Haldeman JM; Conway AE; Arlotto ME; Slentz DH; Muoio DM; Becker TC; Newgard CB
    Nucleic Acids Res; 2019 Feb; 47(4):e23. PubMed ID: 30590691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.