BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30590329)

  • 1. Functionalized polystyrene microspheres as Cryptosporidium surrogates.
    Liu L; Wang Y; Narain R; Liu Y
    Colloids Surf B Biointerfaces; 2019 Mar; 175():680-687. PubMed ID: 30590329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media.
    Pang L; Nowostawska U; Weaver L; Hoffman G; Karmacharya A; Skinner A; Karki N
    Environ Sci Technol; 2012 Nov; 46(21):11779-87. PubMed ID: 22978441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration.
    Lu P; Amburgey JE; Hill VR; Murphy JL; Schneeberger CL; Arrowood MJ; Yuan T
    J Water Health; 2017 Jun; 15(3):374-384. PubMed ID: 28598342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration.
    Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M
    Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of viable and inactivated Cryptosporidium by dual- and tri-media filtration.
    Emelko MB
    Water Res; 2003 Jul; 37(12):2998-3008. PubMed ID: 12767303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cryptosporidium surrogates in drinking water direct filtration.
    Liu L; Wang Y; Craik S; James W; Shu Z; Narain R; Liu Y
    Colloids Surf B Biointerfaces; 2019 Sep; 181():499-505. PubMed ID: 31177076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cryptosporidium and polystyrene microspheres from swimming pool water with sand, cartridge, and precoat filters.
    Amburgey JE; Walsh KJ; Fielding RR; Arrowood MJ
    J Water Health; 2012 Mar; 10(1):31-42. PubMed ID: 22361700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.
    Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD
    Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration.
    Lu P; Amburgey JE
    J Water Health; 2016 Feb; 14(1):109-20. PubMed ID: 26837835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of microspheres as surrogates for Cryptosporidium parvum oocysts in filtration experiments.
    Dai X; Hozalski RM
    Environ Sci Technol; 2003 Mar; 37(5):1037-42. PubMed ID: 12666938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium.
    Abudalo RA; Ryan JN; Harvey RW; Metge DW; Landkamer L
    Water Res; 2010 Feb; 44(4):1104-13. PubMed ID: 19853880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan and metal salt coagulant impacts on Cryptosporidium and microsphere removal by filtration.
    Brown TJ; Emelko MB
    Water Res; 2009 Feb; 43(2):331-8. PubMed ID: 18996552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA.
    Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J
    Water Res; 2010 Feb; 44(4):1126-37. PubMed ID: 20116824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of NOM and biofilm on the removal of Cryptosporidium parvum oocysts in rapid filters.
    Dai X; Hozalski RM
    Water Res; 2002 Aug; 36(14):3523-32. PubMed ID: 12230198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(6):1837-42. PubMed ID: 16570605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the adsorption of endocrine disruptor compounds on typical filter materials using a quartz crystal microbalance.
    Guo JX; Pan J; Wang J; Wang F; Shi HX
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20499-20509. PubMed ID: 31102210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new filter-eluting solution that facilitates improved recovery of Cryptosporidium oocysts from water.
    Inoue M; Rai SK; Oda T; Kimura K; Nakanishi M; Hotta H; Uga S
    J Microbiol Methods; 2003 Dec; 55(3):679-86. PubMed ID: 14607410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.
    Quevedo IR; Olsson AL; Tufenkji N
    Environ Sci Technol; 2013 Mar; 47(5):2212-20. PubMed ID: 23421856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.