These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30590329)

  • 41. Virus deposition onto polyelectrolyte-coated surfaces: A study with bacteriophage MS2.
    Dang HTT; Tarabara VV
    J Colloid Interface Sci; 2019 Mar; 540():155-166. PubMed ID: 30639663
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Occurrence of Cryptosporidium oocysts in sewage effluents and selected surface waters.
    Madore MS; Rose JB; Gerba CP; Arrowood MJ; Sterling CR
    J Parasitol; 1987 Aug; 73(4):702-5. PubMed ID: 3625424
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions.
    Li X; Johnson WP
    Environ Sci Technol; 2005 Mar; 39(6):1658-65. PubMed ID: 15819222
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of methods for the concentration of Cryptosporidium oocysts and Giardia cysts from raw waters.
    Ferguson C; Kaucner C; Krogh M; Deere D; Warnecke M
    Can J Microbiol; 2004 Sep; 50(9):675-82. PubMed ID: 15644920
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies.
    Headd B; Bradford SA
    Water Res; 2016 Mar; 90():185-202. PubMed ID: 26734779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2004 Dec; 38(24):6839-45. PubMed ID: 15669347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drinking water treatment processes for removal of Cryptosporidium and Giardia.
    Betancourt WQ; Rose JB
    Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of model viruses, E. coli and Cryptosporidium oocysts from surface water by zirconium and chitosan coagulants.
    Christensen E; Nilsen V; HÃ¥konsen T; Heistad A; Gantzer C; Robertson LJ; Myrmel M
    J Water Health; 2017 Oct; 15(5):695-705. PubMed ID: 29040073
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.
    Abebe LS; Su YH; Guerrant RL; Swami NS; Smith JA
    Environ Sci Technol; 2015 Nov; 49(21):12958-67. PubMed ID: 26398590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Removal of Cryptosporidium and Giardia in drinking water treatment in a Tuscan area].
    Sacco C; Bianchi M; Lorini C; Burrini D; Berchielli S; Lanciotti E
    Ann Ig; 2006; 18(2):117-26. PubMed ID: 16649509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of Cryptosporidium with wastewater treatment to prevent its proliferation in the water cycle.
    Suwa M; Suzuki Y
    Water Sci Technol; 2003; 47(9):45-9. PubMed ID: 12830939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of collector alternating charged patches on transport of Cryptosporidium parvum oocysts in a patchwise charged heterogeneous micromodel.
    Liu Y; Zhang C; Hu D; Kuhlenschmidt MS; Kuhlenschmidt TB; Mylon SE; Kong R; Bhargava R; Nguyen TH
    Environ Sci Technol; 2013 Mar; 47(6):2670-8. PubMed ID: 23373745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disposable swim diaper retention of Cryptosporidium-sized particles on human subjects in a recreational water setting.
    Amburgey JE; Anderson JB
    J Water Health; 2011 Dec; 9(4):653-8. PubMed ID: 22048425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.
    Cai L; Peng S; Wu D; Tong M
    Environ Pollut; 2016 Jan; 208(Pt B):637-44. PubMed ID: 26561451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst.
    Carey CM; Lee H; Trevors JT
    Water Res; 2004 Feb; 38(4):818-62. PubMed ID: 14769405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aqueous aggregation and surface deposition processes of engineered superparamagnetic iron oxide nanoparticles for environmental applications.
    Li W; Liu D; Wu J; Kim C; Fortner JD
    Environ Sci Technol; 2014 Oct; 48(20):11892-900. PubMed ID: 25222070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for the existence of Cryptosporidium oocysts as single entities in surface runoff.
    Kaucner C; Davies CM; Ferguson CM; Ashbolt NJ
    Water Sci Technol; 2005; 52(8):199-204. PubMed ID: 16312968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Capture of water-borne colloids in granular beds using external electric fields: improving removal of Cryptosporidium parvum.
    Kulkarni P; Dutari G; Weingeist D; Adin A; Haught R; Biswas P
    Water Res; 2005 Mar; 39(6):1047-60. PubMed ID: 15766959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of nano and microparticles by granular filter media coated with nanoporous aluminium oxide.
    Lau BL; Harrington GW; Anderson MA; Tejedor I
    Water Sci Technol; 2004; 50(12):223-8. PubMed ID: 15686025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media.
    Peng S; Wu D; Ge Z; Tong M; Kim H
    Environ Pollut; 2017 Jun; 225():141-149. PubMed ID: 28365511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.