BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30590332)

  • 1. Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: Potential application to phytoremediation and environmental monitoring.
    Li C; Wang M; Luo X; Liang L; Han X; Lin X
    J Environ Radioact; 2019 Mar; 198():43-49. PubMed ID: 30590332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of uranium from aqueous solution by Nymphaea tetragona Georgi: The effect of the accompanying heavy metals.
    Li C; Wang M; Luo X
    Appl Radiat Isot; 2019 Aug; 150():157-163. PubMed ID: 31151070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranium accumulation in aquatic macrophytes in an uraniferous region: Relevance to natural attenuation.
    Cordeiro C; Favas PJC; Pratas J; Sarkar SK; Venkatachalam P
    Chemosphere; 2016 Aug; 156():76-87. PubMed ID: 27164268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine.
    Favas PJC; Pratas J; Mitra S; Sarkar SK; Venkatachalam P
    Sci Total Environ; 2016 Oct; 568():350-368. PubMed ID: 27314898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi.
    Lu XM; Lu PZ; Huang MS; Dai LP
    Int J Phytoremediation; 2013; 15(6):522-35. PubMed ID: 23819294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Inhibitory effects of liquor cultured with Nelumbo nucifera and Nymphaea tetragona on the growth of Microcystis aeruginosa].
    Li L; Hou WH
    Huan Jing Ke Xue; 2007 Oct; 28(10):2180-6. PubMed ID: 18268975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.
    Costa MB; Tavares FV; Martinez CB; Colares IG; Martins CMG
    Ecotoxicol Environ Saf; 2018 Jul; 155():117-124. PubMed ID: 29510306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation.
    Favas PJ; Pratas J; Varun M; D'Souza R; Paul MS
    Sci Total Environ; 2014 Feb; 470-471():993-1002. PubMed ID: 24239820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3.
    Mkandawire M; Vogel K; Taubert B; Dudel EG
    Environ Toxicol; 2007 Feb; 22(1):9-16. PubMed ID: 17295276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.
    Jha VN; Tripathi RM; Sethy NK; Sahoo SK
    Sci Total Environ; 2016 Jan; 539():175-184. PubMed ID: 26360459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure.
    Barillet S; Adam-Guillermin C; Palluel O; Porcher JM; Devaux A
    Environ Pollut; 2011 Feb; 159(2):495-502. PubMed ID: 21093136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation through
    Imran M; Hu S; Luo X; Cao Y; Samo N
    Int J Phytoremediation; 2019; 21(8):752-759. PubMed ID: 30656944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum.
    Chao Z; Yin-Hua S; De-Xin D; Guang-Yue L; Yue-Ting C; Nan H; Hui Z; Zhong-Ran D; Feng L; Jing S; Yong-Dong W
    Chemosphere; 2019 Jun; 224():316-323. PubMed ID: 30826701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative importance of direct and trophic uranium exposures in the crayfish Orconectes limosus: Implication for predicting uranium bioaccumulation and its associated toxicity.
    Simon O; Floriani M; Camilleri V; Gilbin R; Frelon S
    Environ Toxicol Chem; 2013 Feb; 32(2):410-6. PubMed ID: 23280947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uranium (
    Annamalai SK; Arunachalam KD
    Aquat Toxicol; 2017 May; 186():145-158. PubMed ID: 28282621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uranium biosorption by Lemna sp. and Pistia stratiotes.
    Vieira LC; de Araujo LG; de Padua Ferreira RV; da Silva EA; Canevesi RLS; Marumo JT
    J Environ Radioact; 2019 Jul; 203():179-186. PubMed ID: 30925263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Water purification of four aquatic plant species with the presence of iron-carbon interior electrolytic substrates.].
    Zong XX; Min MY; Sun GF; Li N; An SQ; Leng X
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2084-2090. PubMed ID: 29737114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara.
    Wang C; Zhang SH; Wang PF; Hou J; Li W; Zhang WJ
    Aquat Toxicol; 2008 Apr; 87(2):88-98. PubMed ID: 18304660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and signifying the uranium remediation level of Alternanthera philoxeroides and Eichhornia crassipes from aquatic medium.
    Imran M; Shang-Lian H; Xuegang L; Cao Y; Samo N
    Environ Pollut; 2024 Feb; 342():123063. PubMed ID: 38043767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.