BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30590345)

  • 1. Peptide-functionalized supported lipid bilayers to construct cell membrane mimicking interfaces.
    Kilic A; Kok FN
    Colloids Surf B Biointerfaces; 2019 Apr; 176():18-26. PubMed ID: 30590345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation.
    Zhu X; Wang Z; Zhao A; Huang N; Chen H; Zhou S; Xie X
    Colloids Surf B Biointerfaces; 2014 Apr; 116():459-64. PubMed ID: 24552662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quartz Crystal Microbalances as Tools for Probing Protein-Membrane Interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2019; 2003():31-52. PubMed ID: 31218612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell adhesion through clustered ligand on fluid supported lipid bilayers.
    Sandrin L; Coche-Guérente L; Bernstein A; Basit H; Labbé P; Dumy P; Boturyn D
    Org Biomol Chem; 2010 Apr; 8(7):1531-4. PubMed ID: 20237663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness.
    Meker S; Chin H; Sut TN; Cho NJ
    Langmuir; 2018 Aug; 34(32):9548-9560. PubMed ID: 30021071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates.
    Cho NJ; Frank CW; Kasemo B; Höök F
    Nat Protoc; 2010 Jun; 5(6):1096-106. PubMed ID: 20539285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: real-time monitoring by quartz crystal microbalance with dissipation.
    Zhang X; Yang S
    Langmuir; 2011 Mar; 27(6):2528-35. PubMed ID: 21294560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGD-functionalized supported lipid bilayers modulate pre-osteoblast adherence and promote osteogenic differentiation.
    Verstappen JFM; Jin J; Koçer G; Haroon M; Jonkheijm P; Bakker AD; Klein-Nulend J; Jaspers RT
    J Biomed Mater Res A; 2020 Apr; 108(4):923-937. PubMed ID: 31895490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies.
    Swana KW; Camesano TA; Nagarajan R
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.
    Ferhan AR; Jackman JA; Cho NJ
    Anal Chem; 2016 Dec; 88(24):12524-12531. PubMed ID: 28193076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Quartz Crystal Microbalance Monitoring of Free Docosahexaenoic Acid Interactions with Supported Lipid Bilayers.
    Flynn KR; Martin LL; Ackland ML; Torriero AA
    Langmuir; 2016 Nov; 32(45):11717-11727. PubMed ID: 27728769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of extracellular matrix protein functionalized fluid membrane on cell adhesion and matrix remodeling.
    Huang CJ; Tseng PY; Chang YC
    Biomaterials; 2010 Sep; 31(27):7183-95. PubMed ID: 20580428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guiding hMSC Adhesion and Differentiation on Supported Lipid Bilayers.
    Koçer G; Jonkheijm P
    Adv Healthc Mater; 2017 Feb; 6(3):. PubMed ID: 27893196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quartz crystal microbalances as tools for probing protein-membrane interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2013; 974():1-21. PubMed ID: 23404269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes.
    Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA
    Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodeless QCM-D for lipid bilayer applications.
    Kunze A; Zäch M; Svedhem S; Kasemo B
    Biosens Bioelectron; 2011 Jan; 26(5):1833-8. PubMed ID: 20153163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tethered fibronectin liposomes on supported lipid bilayers as a prepackaged controlled-release platform for cell-based assays.
    Tseng PY; Chang YC
    Biomacromolecules; 2012 Aug; 13(8):2254-62. PubMed ID: 22721275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring.
    Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of supported lipid bilayers at surfaces with controlled curvatures: influence of lipid charge.
    Sundh M; Svedhem S; Sutherland DS
    J Phys Chem B; 2011 Jun; 115(24):7838-48. PubMed ID: 21630649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.