These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 30590457)
1. Identification of epistasis loci underlying rice flowering time by controlling population stratification and polygenic effect. Ahsan A; Monir M; Meng X; Rahaman M; Chen H; Chen M DNA Res; 2019 Apr; 26(2):119-130. PubMed ID: 30590457 [TBL] [Abstract][Full Text] [Related]
2. Robustification of GWAS to explore effective SNPs addressing the challenges of hidden population stratification and polygenic effects. Akond Z; Ahsan MA; Alam M; Mollah MNH Sci Rep; 2021 Jun; 11(1):13060. PubMed ID: 34158546 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide association study of flowering time reveals complex genetic heterogeneity and epistatic interactions in rice. Liu C; Tu Y; Liao S; Fu X; Lian X; He Y; Xie W; Wang G Gene; 2021 Feb; 770():145353. PubMed ID: 33333227 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. Lekklar C; Pongpanich M; Suriya-Arunroj D; Chinpongpanich A; Tsai H; Comai L; Chadchawan S; Buaboocha T BMC Genomics; 2019 Jan; 20(1):76. PubMed ID: 30669971 [TBL] [Abstract][Full Text] [Related]
5. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. He T; Hill CB; Angessa TT; Zhang XQ; Chen K; Moody D; Telfer P; Westcott S; Li C J Exp Bot; 2019 Oct; 70(20):5603-5616. PubMed ID: 31504706 [TBL] [Abstract][Full Text] [Related]
6. Epistatic interactions of three loci regulate flowering time under short and long daylengths in a backcross population of rice. Gu XY; Foley ME Theor Appl Genet; 2007 Feb; 114(4):745-54. PubMed ID: 17171390 [TBL] [Abstract][Full Text] [Related]
7. Late flowering in F Matsubara K; Ando T; Yano M Genetica; 2019 Dec; 147(5-6):351-358. PubMed ID: 31432314 [TBL] [Abstract][Full Text] [Related]
8. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Shrestha R; Gómez-Ariza J; Brambilla V; Fornara F Ann Bot; 2014 Nov; 114(7):1445-58. PubMed ID: 24651369 [TBL] [Abstract][Full Text] [Related]
9. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Sun C; Chen D; Fang J; Wang P; Deng X; Chu C Protein Cell; 2014 Dec; 5(12):889-98. PubMed ID: 25103896 [TBL] [Abstract][Full Text] [Related]
10. Hd18, Encoding Histone Acetylase Related to Arabidopsis FLOWERING LOCUS D, is Involved in the Control of Flowering Time in Rice. Shibaya T; Hori K; Ogiso-Tanaka E; Yamanouchi U; Shu K; Kitazawa N; Shomura A; Ando T; Ebana K; Wu J; Yamazaki T; Yano M Plant Cell Physiol; 2016 Sep; 57(9):1828-38. PubMed ID: 27318280 [TBL] [Abstract][Full Text] [Related]
11. Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana. Juenger TE; Sen S; Stowe KA; Simms EL Genetica; 2005 Feb; 123(1-2):87-105. PubMed ID: 15881683 [TBL] [Abstract][Full Text] [Related]
12. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Izawa T; Takahashi Y; Yano M Curr Opin Plant Biol; 2003 Apr; 6(2):113-20. PubMed ID: 12667866 [TBL] [Abstract][Full Text] [Related]
13. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. Hirabayashi H; Sasaki K; Kambe T; Gannaban RB; Miras MA; Mendioro MS; Simon EV; Lumanglas PD; Fujita D; Takemoto-Kuno Y; Takeuchi Y; Kaji R; Kondo M; Kobayashi N; Ogawa T; Ando I; Jagadish KS; Ishimaru T J Exp Bot; 2015 Mar; 66(5):1227-36. PubMed ID: 25534925 [TBL] [Abstract][Full Text] [Related]
14. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping. Liu F; Schmidt RH; Reif JC; Jiang Y G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824 [TBL] [Abstract][Full Text] [Related]
15. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. Brachi B; Faure N; Horton M; Flahauw E; Vazquez A; Nordborg M; Bergelson J; Cuguen J; Roux F PLoS Genet; 2010 May; 6(5):e1000940. PubMed ID: 20463887 [TBL] [Abstract][Full Text] [Related]
16. Effect of epistasis and environment on flowering time in barley reveals a novel flowering-delaying QTL allele. Afsharyan NP; Sannemann W; Léon J; Ballvora A J Exp Bot; 2020 Jan; 71(3):893-906. PubMed ID: 31781747 [TBL] [Abstract][Full Text] [Related]
17. A multilocus association analysis method integrating phenotype and expression data reveals multiple novel associations to flowering time variation in wild-collected Arabidopsis thaliana. Zan Y; Carlborg Ö Mol Ecol Resour; 2018 Jul; 18(4):798-808. PubMed ID: 29356396 [TBL] [Abstract][Full Text] [Related]
18. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies. Zhang W; Dai X; Wang Q; Xu S; Zhao PX PLoS Comput Biol; 2016 May; 12(5):e1004925. PubMed ID: 27224861 [TBL] [Abstract][Full Text] [Related]
19. Genomic adaptation of flowering-time genes during the expansion of rice cultivation area. Itoh H; Wada KC; Sakai H; Shibasaki K; Fukuoka S; Wu J; Yonemaru JI; Yano M; Izawa T Plant J; 2018 Jun; 94(5):895-909. PubMed ID: 29570873 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]