These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30590739)

  • 1. The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase.
    Chung S; Lerner E; Jin Y; Kim S; Alhadid Y; Grimaud LW; Zhang IX; Knobler CM; Gelbart WM; Weiss S
    Nucleic Acids Res; 2019 Feb; 47(3):1440-1450. PubMed ID: 30590739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation.
    Wigneshweraraj SR; Nechaev S; Severinov K; Buck M
    J Mol Biol; 2002 Jun; 319(5):1067-83. PubMed ID: 12079348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the ternary complex of RNA polymerase, cyclic AMP receptor protein and DNA by fluorescence anisotropy measurements.
    Bonarek P; Kedracka-Krok S; Kepys B; Wasylewski Z
    Acta Biochim Pol; 2008; 55(3):537-47. PubMed ID: 18787713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA polymerase molecular beacon as tool for studies of RNA polymerase-promoter interactions.
    Mekler V; Severinov K
    Methods; 2015 Sep; 86():19-26. PubMed ID: 25956222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding has opposite effects on two critical sub-steps of transcription initiation.
    Mukherjee P; Mazumder A
    FEBS Lett; 2024 May; 598(9):1022-1033. PubMed ID: 38479985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free RNA polymerase in Escherichia coli.
    Patrick M; Dennis PP; Ehrenberg M; Bremer H
    Biochimie; 2015 Dec; 119():80-91. PubMed ID: 26482806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetic contributions to the initiation of transcription in E. coli.
    Ramprakash J; Schwarz FP
    Biophys Chem; 2008 Dec; 138(3):91-8. PubMed ID: 18834656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter recognition by Escherichia coli RNA polymerase: effects of the UP element on open complex formation and promoter clearance.
    Strainic MG; Sullivan JJ; Velevis A; deHaseth PL
    Biochemistry; 1998 Dec; 37(51):18074-80. PubMed ID: 9922176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mutant RNA polymerase that forms unusual open promoter complexes.
    Severinov K; Darst SA
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13481-6. PubMed ID: 9391051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP.
    Barker MM; Gaal T; Gourse RL
    J Mol Biol; 2001 Jan; 305(4):689-702. PubMed ID: 11162085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.
    Ando T; Yu I; Feig M; Sugita Y
    J Phys Chem B; 2016 Nov; 120(46):11856-11865. PubMed ID: 27797534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A beta subunit mutation disrupting the catalytic function of Escherichia coli RNA polymerase.
    Lee J; Kashlev M; Borukhov S; Goldfarb A
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6018-22. PubMed ID: 2068078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of σ-dependent pausing by RNA polymerases from Escherichia coli and Thermus aquaticus.
    Zhilina EV; Miropolskaya NA; Bass IA; Brodolin KL; Kulbachinskiy AV
    Biochemistry (Mosc); 2011 Oct; 76(10):1098-106. PubMed ID: 22098235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting.
    Reppas NB; Wade JT; Church GM; Struhl K
    Mol Cell; 2006 Dec; 24(5):747-757. PubMed ID: 17157257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription.
    Minakhin L; Nechaev S; Campbell EA; Severinov K
    J Bacteriol; 2001 Jan; 183(1):71-6. PubMed ID: 11114902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance.
    Swapna G; Chakraborty A; Kumari V; Sen R; Nagaraja V
    Mol Microbiol; 2011 Jun; 80(5):1169-85. PubMed ID: 21435034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Escherichia coli sigma 70 with core RNA polymerase.
    Burgess RR; Arthur TM; Pietz BC
    Cold Spring Harb Symp Quant Biol; 1998; 63():277-87. PubMed ID: 10384292
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.