BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30590793)

  • 1. R-loop formation by dCas9 is mutagenic in Saccharomyces cerevisiae.
    Laughery MF; Mayes HC; Pedroza IK; Wyrick JJ
    Nucleic Acids Res; 2019 Mar; 47(5):2389-2401. PubMed ID: 30590793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. dCas9 binding inhibits the initiation of base excision repair in vitro.
    Antony JS; Roberts SA; Wyrick JJ; Hinz JM
    DNA Repair (Amst); 2022 Jan; 109():103257. PubMed ID: 34847381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage.
    House NCM; Parasuram R; Layer JV; Price BD
    PLoS One; 2020; 15(12):e0237759. PubMed ID: 33332350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FokI-dCas9 mediates high-fidelity genome editing in pigs.
    Fisicaro N; Salvaris EJ; Philip GK; Wakefield MJ; Nottle MB; Hawthorne WJ; Cowan PJ
    Xenotransplantation; 2020 Jan; 27(1):e12551. PubMed ID: 31407391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks.
    Lei L; Chen H; Xue W; Yang B; Hu B; Wei J; Wang L; Cui Y; Li W; Wang J; Yan L; Shang W; Gao J; Sha J; Zhuang M; Huang X; Shen B; Yang L; Chen J
    Nat Struct Mol Biol; 2018 Jan; 25(1):45-52. PubMed ID: 29323274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous deamination of cytosine to uracil is biased to the non-transcribed DNA strand in yeast.
    Williams JD; Zhu D; García-Rubio M; Shaltz S; Aguilera A; Jinks-Robertson S
    DNA Repair (Amst); 2023 Jun; 126():103489. PubMed ID: 37018983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytically inactive Cas9 impairs DNA replication fork progression to induce focal genomic instability.
    Doi G; Okada S; Yasukawa T; Sugiyama Y; Bala S; Miyazaki S; Kang D; Ito T
    Nucleic Acids Res; 2021 Jan; 49(2):954-968. PubMed ID: 33398345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosine base editing systems with minimized off-target effect and molecular size.
    Li A; Mitsunobu H; Yoshioka S; Suzuki T; Kondo A; Nishida K
    Nat Commun; 2022 Aug; 13(1):4531. PubMed ID: 35941130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions.
    Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF
    PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the autosomal Ceratitis capitata transformer gene using Cas9 or dCas9 to masculinize XX individuals without inducing mutations.
    Primo P; Meccariello A; Inghilterra MG; Gravina A; Del Corsano G; Volpe G; Sollazzo G; Aceto S; Robinson MD; Salvemini M; Saccone G
    BMC Genet; 2020 Dec; 21(Suppl 2):150. PubMed ID: 33339496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria.
    Xiong T; Rohm D; Workman RE; Roundtree L; Novina CD; Timp W; Ostermeier M
    PLoS One; 2018; 13(12):e0209408. PubMed ID: 30562388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9.
    Álvarez B; Mencía M; de Lorenzo V; Fernández LÁ
    Nat Commun; 2020 Dec; 11(1):6436. PubMed ID: 33353963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases.
    Xiong T; Meister GE; Workman RE; Kato NC; Spellberg MJ; Turker F; Timp W; Ostermeier M; Novina CD
    Sci Rep; 2017 Jul; 7(1):6732. PubMed ID: 28751638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of R-Loops by In Vivo and In Vitro Cytosine Deamination in Saccharomyces cerevisiae.
    Cañas JC; Aguilera A; Gómez-González B
    Methods Mol Biol; 2022; 2528():39-53. PubMed ID: 35704184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encounters between Cas9/dCas9 and G-Quadruplexes: Implications for Transcription Regulation and Cas9-Mediated DNA Cleavage.
    Hoque ME; Mustafa G; Basu S; Balci H
    ACS Synth Biol; 2021 May; 10(5):972-978. PubMed ID: 33970608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies.
    Jensen ED; Ferreira R; Jakočiūnas T; Arsovska D; Zhang J; Ding L; Smith JD; David F; Nielsen J; Jensen MK; Keasling JD
    Microb Cell Fact; 2017 Mar; 16(1):46. PubMed ID: 28298224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway.
    Xu S; Kim J; Tang Q; Chen Q; Liu J; Xu Y; Fu X
    Protein Cell; 2020 May; 11(5):352-365. PubMed ID: 32170574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclease dead Cas9 is a programmable roadblock for DNA replication.
    Whinn KS; Kaur G; Lewis JS; Schauer GD; Mueller SH; Jergic S; Maynard H; Gan ZY; Naganbabu M; Bruchez MP; O'Donnell ME; Dixon NE; van Oijen AM; Ghodke H
    Sci Rep; 2019 Sep; 9(1):13292. PubMed ID: 31527759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.