These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30591023)

  • 1. Application of transfer learning for cancer drug sensitivity prediction.
    Dhruba SR; Rahman R; Matlock K; Ghosh S; Pal R
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):497. PubMed ID: 30591023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.
    Turki T; Wei Z; Wang JTL
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A link prediction approach to cancer drug sensitivity prediction.
    Turki T; Wei Z
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):94. PubMed ID: 28984192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
    Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR
    Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity Aware Random Forest for Drug Sensitivity Prediction.
    Rahman R; Matlock K; Ghosh S; Pal R
    Sci Rep; 2017 Sep; 7(1):11347. PubMed ID: 28900181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional random forest with applications in dose-response predictions.
    Rahman R; Dhruba SR; Ghosh S; Pal R
    Sci Rep; 2019 Feb; 9(1):1628. PubMed ID: 30733524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model.
    Wei D; Liu C; Zheng X; Li Y
    BMC Bioinformatics; 2019 Jan; 20(1):44. PubMed ID: 30670007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction.
    Haider S; Rahman R; Ghosh S; Pal R
    PLoS One; 2015; 10(12):e0144490. PubMed ID: 26658256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical intelligence: New machine learning techniques for predicting clinical drug response.
    Turki T; Wang JTL
    Comput Biol Med; 2019 Apr; 107():302-322. PubMed ID: 30771879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction.
    Su R; Liu X; Xiao G; Wei L
    Brief Bioinform; 2020 May; 21(3):996-1005. PubMed ID: 30868164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TransCDR: a deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion.
    Xia X; Zhu C; Zhong F; Liu L
    BMC Biol; 2024 Oct; 22(1):227. PubMed ID: 39385185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A community effort to assess and improve drug sensitivity prediction algorithms.
    Costello JC; Heiser LM; Georgii E; Gönen M; Menden MP; Wang NJ; Bansal M; Ammad-ud-din M; Hintsanen P; Khan SA; Mpindi JP; Kallioniemi O; Honkela A; Aittokallio T; Wennerberg K; ; Collins JJ; Gallahan D; Singer D; Saez-Rodriguez J; Kaski S; Gray JW; Stolovitzky G
    Nat Biotechnol; 2014 Dec; 32(12):1202-12. PubMed ID: 24880487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of anti-cancer drug response by kernelized multi-task learning.
    Tan M
    Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.