BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30591196)

  • 1. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ prepared tungsten(VI) oxide supported Pd0 NPs, remarkable activity and reusability in H2 releasing from dimethylamine borane.
    Karaboğa S
    Turk J Chem; 2022; 46(2):394-403. PubMed ID: 38143470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H
    Al-Hameedawi D; Karaboğa S; Morkan İA
    Turk J Chem; 2023; 47(2):436-447. PubMed ID: 37528933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron nitride nanosheets supported highly homogeneous bimetallic AuPd alloy nanoparticles catalyst for hydrogen production from formic acid.
    Shaybanizadeh S; Najafi Chermahini A; Luque R
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35294941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AgPd Nanoparticles Deposited on WO
    Yu C; Guo X; Xi Z; Muzzio M; Yin Z; Shen B; Li J; Seto CT; Sun S
    J Am Chem Soc; 2017 Apr; 139(16):5712-5715. PubMed ID: 28402632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction.
    Guo X; Di X; Tang T; Shi Y; Liu D; Wang W; Liu Z; Ji X; Shao X
    J Colloid Interface Sci; 2024 Mar; 658():362-372. PubMed ID: 38113545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous Graphitic Carbon Nitride/Black Phosphorus/AgPd Alloy Nanoparticles Ternary Nanocomposite: A Highly Efficient Catalyst for the Methanolysis of Ammonia Borane.
    Eken Korkut S; Küçükkeçeci H; Metin Ö
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8130-8139. PubMed ID: 31983206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature.
    Prabu S; Chiang KY
    J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of palladium silver nanoparticles on NH
    Han J; Zhang Z; Hao Z; Li G; Liu T
    J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced catalytic activity over palladium supported on ZrO
    Wang T; Li F; An H; Xue W; Wang Y
    RSC Adv; 2019 Jan; 9(6):3359-3366. PubMed ID: 35518976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid.
    Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.
    Mellmann D; Sponholz P; Junge H; Beller M
    Chem Soc Rev; 2016 Jul; 45(14):3954-88. PubMed ID: 27119123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of AuPd nanoparticles anchored on TiO
    Jiang Y; Chen M; Yang Y; Zhang X; Xiao X; Fan X; Wang C; Chen L
    Nanotechnology; 2018 Aug; 29(33):335402. PubMed ID: 29794333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.