BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30591204)

  • 1. Numerical design of a microfluidic chip for probing mechanical properties of cells.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2019 Feb; 84():103-112. PubMed ID: 30591204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between transit time and mechanical properties of a cell through a stenosed microchannel.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    Soft Matter; 2018 Jan; 14(4):533-545. PubMed ID: 29308825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphase flow experiment and simulation for cells-on-a-chip devices.
    Zhang M; Zheng A; Zheng ZC; Wang MZ
    Proc Inst Mech Eng H; 2019 Apr; 233(4):432-443. PubMed ID: 30929613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry.
    Han Z; Chen L; Zhang S; Wang J; Duan X
    Anal Chem; 2020 Nov; 92(21):14568-14575. PubMed ID: 32911928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoresis-Based Method for Measuring the Multiangle Mechanical Properties of Biological Cells.
    Zhu B; Li W; Zhu M; Hsu PL; Sun L; Yang H
    Biomed Res Int; 2020; 2020():5358181. PubMed ID: 32337255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A membrane-based microfluidic device for mechano-chemical cell manipulation.
    Ravetto A; Hoefer IE; den Toonder JM; Bouten CV
    Biomed Microdevices; 2016 Apr; 18(2):31. PubMed ID: 26941177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip.
    Chang D; Sakuma S; Kera K; Uozumi N; Arai F
    Lab Chip; 2018 Apr; 18(8):1241-1249. PubMed ID: 29568834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying the effects of asymmetry on the bending rigidity of lipid membranes formed by microfluidics.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Chem Commun (Camb); 2016 Apr; 52(30):5277-80. PubMed ID: 27001410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells.
    Hu S; Liu T; Xue C; Li Y; Yang Y; Xu X; Liu B; Chen X; Zhao Y; Qin K
    Anal Methods; 2022 Dec; 14(46):4813-4821. PubMed ID: 36382629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
    Lange JR; Steinwachs J; Kolb T; Lautscham LA; Harder I; Whyte G; Fabry B
    Biophys J; 2015 Jul; 109(1):26-34. PubMed ID: 26153699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical approach-based simulation to predict cerebrovascular shear stress in a blood-brain barrier organ-on-a-chip.
    Jeong S; Seo JH; Garud KS; Park SW; Lee MY
    Biosens Bioelectron; 2021 Jul; 183():113197. PubMed ID: 33819903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microfabrication of mold for polymer microfluidic devices with Zr-based metallic glass.
    Zhang X; Li H; Wang Z; Chen X; Li Q
    Biomed Microdevices; 2018 Nov; 20(4):96. PubMed ID: 30402810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.