These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30592202)

  • 1. Impact of Substrate Characteristics on Stretchable Polymer Semiconductor Behavior.
    Sun T; Song R; Balar N; Sen P; Kline RJ; O'Connor BT
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3280-3289. PubMed ID: 30592202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Plastic Deformation of Polymer Blends as a Means to Achieve Stretchable Organic Transistors.
    Sun T; Scott JI; Wang M; Kline RJ; Bazan G; O'Connor BT
    Adv Electron Mater; 2017 Jan; 3(1):. PubMed ID: 28690975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yield Point of Semiconducting Polymer Films on Stretchable Substrates Determined by Onset of Buckling.
    Printz AD; Zaretski AV; Savagatrup S; Chiang AS; Lipomi DJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23257-64. PubMed ID: 26437763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastomer-infiltrated vertically aligned carbon nanotube film-based wavy-configured stretchable conductors.
    Shin UH; Jeong DW; Kim SH; Lee HW; Kim JM
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12909-14. PubMed ID: 25006992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors.
    Wu S; Yao S; Liu Y; Hu X; Huang HH; Zhu Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41696-41703. PubMed ID: 32808757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates.
    Ko EH; Kim HJ; Lee SM; Kim TW; Kim HK
    Sci Rep; 2017 Apr; 7():46739. PubMed ID: 28436426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically Tunable Single-Walled Carbon Nanotube Films as a Universal Material for Transparent and Stretchable Electronics.
    Gilshteyn EP; Romanov SA; Kopylova DS; Savostyanov GV; Anisimov AS; Glukhova OE; Nasibulin AG
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27327-27334. PubMed ID: 31266298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading.
    Song K; Cho NK; Park K; Kim CS
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer thin film adhesion utilizing the transition from surface wrinkling to delamination.
    Son H; Chau AL; Davis CS
    Soft Matter; 2019 Aug; 15(31):6375-6382. PubMed ID: 31305851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kirigami-Inspired Highly Stretchable, Conductive, and Hierarchical Ti
    Chen W; Liu LX; Zhang HB; Yu ZZ
    ACS Nano; 2021 Apr; 15(4):7668-7681. PubMed ID: 33861590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biaxially stretchable silver nanowire conductive film embedded in a taro leaf-templated PDMS surface.
    Wu C; Jiu J; Araki T; Koga H; Sekitani T; Wang H; Suganuma K
    Nanotechnology; 2017 Jan; 28(1):01LT01. PubMed ID: 27893449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly stretchable patternable conductive circuits and wearable strain sensors based on polydimethylsiloxane and silver nanoparticles.
    Feng P; Ji H; Zhang L; Luo X; Leng X; He P; Feng H; Zhang J; Ma X; Zhao W
    Nanotechnology; 2019 May; 30(18):185501. PubMed ID: 30673645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics.
    Rodriquez D; Kim JH; Root SE; Fei Z; Boufflet P; Heeney M; Kim TS; Lipomi DJ
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8855-8862. PubMed ID: 28220705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDMS-Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics.
    Jeong SH; Zhang S; Hjort K; Hilborn J; Wu Z
    Adv Mater; 2016 Jul; 28(28):5830-6. PubMed ID: 27167137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable Electronics Based on PDMS Substrates.
    Qi D; Zhang K; Tian G; Jiang B; Huang Y
    Adv Mater; 2021 Feb; 33(6):e2003155. PubMed ID: 32830370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications.
    Wang T; Wang R; Cheng Y; Sun J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9297-304. PubMed ID: 26895474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Binder and Substrate Materials on the Performance and Reliability of Stretchable Nanocomposite Strain Sensors.
    Jin Nam H; Yeong Park J; Vu VP; Choa SH
    J Nanosci Nanotechnol; 2021 May; 21(5):2969-2979. PubMed ID: 33653467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Multi-Material Structured Thin Film Transfer to Elastomers for Stretchable Electronic Devices.
    Ding X; Moran-Mirabal JM
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroless Deposition Metals on Poly(dimethylsiloxane) with Strong Adhesion As Flexible and Stretchable Conductive Materials.
    Zhang FT; Xu L; Chen JH; Zhao B; Fu XZ; Sun R; Chen Q; Wong CP
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2075-2082. PubMed ID: 29253331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme hardening of PDMS thin films due to high compressive strain and confined thickness.
    Xu W; Chahine N; Sulchek T
    Langmuir; 2011 Jul; 27(13):8470-7. PubMed ID: 21634411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.