These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30592598)

  • 21. Why different water models predict different structures under 2D confinement.
    Dix J; Lue L; Carbone P
    J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural order in glassy water.
    Giovambattista N; Debenedetti PG; Sciortino F; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061505. PubMed ID: 16089741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    ACS Nano; 2015 Dec; 9(12):12197-204. PubMed ID: 26575824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.
    Bandyopadhyay D; Choudhury N
    J Chem Phys; 2012 Jun; 136(22):224505. PubMed ID: 22713055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase Diagrams of TIP4P/2005, SPC/E, and TIP5P Water at High Pressure.
    Yagasaki T; Matsumoto M; Tanaka H
    J Phys Chem B; 2018 Aug; 122(31):7718-7725. PubMed ID: 30016105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluctuations in number of water molecules confined between nanoparticles.
    Eun C; Berkowitz ML
    J Phys Chem B; 2010 Oct; 114(42):13410-4. PubMed ID: 20925366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water between plates in the presence of an electric field in an open system.
    Vaitheeswaran S; Yin H; Rasaiah JC
    J Phys Chem B; 2005 Apr; 109(14):6629-35. PubMed ID: 16851744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of water at the nanoscale hydrophobic confinement.
    Choudhury N
    J Chem Phys; 2010 Feb; 132(6):064505. PubMed ID: 20151749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-density amorphous ice: Molecular dynamics simulations of the glass transition at 0.3 GPa.
    Seidl M; Loerting T; Zifferer G
    J Chem Phys; 2009 Sep; 131(11):114502. PubMed ID: 19778124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of extensive interfaces between rigid, apolar walls and water.
    Machlin ES
    J Chem Phys; 2013 Oct; 139(13):134703. PubMed ID: 24116578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions.
    Bullock G; Molinero V
    Faraday Discuss; 2013; 167():371-88. PubMed ID: 24640501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulation study of interaction between model rough hydrophobic surfaces.
    Eun C; Berkowitz ML
    J Phys Chem A; 2011 Jun; 115(23):6059-67. PubMed ID: 21495665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hexagonal ice transforms at high pressures and compression rates directly into "doubly metastable" ice phases.
    Bauer M; Winkel K; Toebbens DM; Mayer E; Loerting T
    J Chem Phys; 2009 Dec; 131(22):224514. PubMed ID: 20001064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophobic drying and hysteresis at different length scales by molecular dynamics simulations.
    Lei Y; Leng Y
    Langmuir; 2012 Feb; 28(6):3152-8. PubMed ID: 22242704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates.
    Kumar P; Buldyrev SV; Starr FW; Giovambattista N; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051503. PubMed ID: 16383607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of water models on the prediction of slip length of water in graphene nanochannels.
    Celebi AT; Nguyen CT; Hartkamp R; Beskok A
    J Chem Phys; 2019 Nov; 151(17):174705. PubMed ID: 31703484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.