These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30592754)

  • 41. Simulation study of the intercompartmental fluid shifts during hemodialysis.
    Akcahuseyin E; Nette RW; Vincent HH; van Duyl WA; Krepel H; Weimar W; Zietse R
    ASAIO J; 2000; 46(1):81-94. PubMed ID: 10667723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altering plasma sodium concentration rapidly changes blood pressure during haemodialysis.
    Suckling RJ; Swift PA; He FJ; Markandu ND; MacGregor GA
    Nephrol Dial Transplant; 2013 Aug; 28(8):2181-6. PubMed ID: 23743017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of increased dialysate fill volume on peritoneal fluid and solute transport.
    Wang T; Heimbürger O; Cheng H; Waniewski J; Bergström J; Lindholm B
    Kidney Int; 1997 Oct; 52(4):1068-76. PubMed ID: 9328947
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intensive Hemodialysis: Effects of Treatment Time and Frequency on Time-Averaged Concentrations of Solutes.
    Mineshima M
    Contrib Nephrol; 2018; 196():184-187. PubMed ID: 30041225
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solute disequilibrium and multicompartment modeling.
    Kaufman AM; Schneditz D; Smye S; Polaschegg HD; Levin NW
    Adv Ren Replace Ther; 1995 Oct; 2(4):319-29. PubMed ID: 8591123
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of palytoxin on the sodium-potassium pump: model and simulation.
    Rodrigues AM; Almeida AC; Infantosi AF
    Phys Biol; 2008 Jul; 5(3):036005. PubMed ID: 18663280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model.
    Rippe B; Venturoli D; Simonsen O; de Arteaga J
    Perit Dial Int; 2004; 24(1):10-27. PubMed ID: 15104333
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach.
    Stachowska-Pietka J; Waniewski J; Flessner MF; Lindholm B
    Am J Physiol Renal Physiol; 2012 May; 302(10):F1331-41. PubMed ID: 22301624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sodium balance in maintenance hemodialysis.
    Santos SF; Peixoto AJ
    Semin Dial; 2010; 23(6):549-55. PubMed ID: 21175831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of dialysate sodium and variable ultrafiltration on fluid balance during hemodialysis.
    de Vries PM; Kouw PM; Olthof CG; Solf A; Schuenemann B; Oe LP; Quellhorst E; Donker AJ
    ASAIO Trans; 1990; 36(4):821-4. PubMed ID: 2268486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of intradialytic solute and fluid kinetics. Setting Up a predictive mathematical model.
    Colì L; Ursino M; De Pascalis A; Brighenti C; Dalmastri V; La Manna G; Isola E; Cianciolo G; Patrono D; Boni P; Stefoni S
    Blood Purif; 2000; 18(1):37-49. PubMed ID: 10686441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcapillary transport of water, small solutes and proteins during hemodialysis.
    Pstras L; Waniewski J; Lindholm B
    Sci Rep; 2020 Oct; 10(1):18736. PubMed ID: 33127932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On-line monitoring of solutes in dialysate using absorption of ultraviolet radiation: technique description.
    Fridolin I; Magnusson M; Lindberg LG
    Int J Artif Organs; 2002 Aug; 25(8):748-61. PubMed ID: 12296459
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simple membrane models for peritoneal dialysis. Evaluation of diffusive and convective solute transport.
    Waniewski J; Werynski A; Heimbürger O; Lindholm B
    ASAIO J; 1992; 38(4):788-96. PubMed ID: 1450472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A simple mathematical model of intradialytic sodium kinetics: "in vivo" validation during hemodialysis with constant or variable sodium.
    Ursino M; Colì L; La Manna G; Grilli Cicilioni M; Dalmastri V; Giudicissi A; Masotti P; Avanzolini G; Stefoni S; Bonomini V
    Int J Artif Organs; 1996 Jul; 19(7):393-403. PubMed ID: 8841853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Urea as a marker of adequacy in hemodialysis: lesson from in vivo urea dynamics monitoring.
    Canaud B; Bosc JY; Cabrol L; Leray-Moragues H; Navino C; Verzetti G; Thomaseth K
    Kidney Int Suppl; 2000 Aug; 76():S28-40. PubMed ID: 10936797
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A simulation study on transcellular fluid shifts induced by hemodialysis.
    Kimura G; Van Stone JC; Bauer JH; Keshaviah PR
    Kidney Int; 1983 Oct; 24(4):542-8. PubMed ID: 6645218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simple models for description of small-solute transport in peritoneal dialysis.
    Waniewski J; Werynski A; Heimbürger O; Lindholm B
    Blood Purif; 1991; 9(3):129-41. PubMed ID: 1801855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sodium setpoint and gradient in bicarbonate hemodialysis.
    Basile C; Libutti P; Lisi P; Vernaglione L; Casucci F; Losurdo N; Teutonico A; Lomonte C
    J Nephrol; 2013; 26(6):1136-42. PubMed ID: 23147688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peritoneal fluid and solute transport with different polyglucose formulations.
    Wang T; Heimbürger O; Cheng HH; Bergström J; Lindholm B
    Perit Dial Int; 1998; 18(2):193-203. PubMed ID: 9576369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.