BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 30593278)

  • 21. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR DNA base editors with reduced RNA off-target and self-editing activities.
    Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK
    Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells.
    Chen S; Liu Z; Yu H; Lai L; Li Z
    J Genet Genomics; 2022 Oct; 49(10):927-933. PubMed ID: 35421582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions.
    Kim YB; Komor AC; Levy JM; Packer MS; Zhao KT; Liu DR
    Nat Biotechnol; 2017 Apr; 35(4):371-376. PubMed ID: 28191901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes.
    Sanchez A; Ortega P; Sakhtemani R; Manjunath L; Oh S; Bournique E; Becker A; Kim K; Durfee C; Temiz NA; Chen XS; Harris RS; Lawrence MS; Buisson R
    Nat Commun; 2024 Mar; 15(1):2370. PubMed ID: 38499542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response.
    Wang X; Ding C; Yu W; Wang Y; He S; Yang B; Xiong YC; Wei J; Li J; Liang J; Lu Z; Zhu W; Wu J; Zhou Z; Huang X; Liu Z; Yang L; Chen J
    Cell Rep; 2020 Jun; 31(9):107723. PubMed ID: 32492431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR Inhibition.
    Buisson R; Lawrence MS; Benes CH; Zou L
    Cancer Res; 2017 Sep; 77(17):4567-4578. PubMed ID: 28698210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression.
    Warren CJ; Westrich JA; Doorslaer KV; Pyeon D
    Viruses; 2017 Aug; 9(8):. PubMed ID: 28825669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences.
    Yu W; Li J; Huang S; Li X; Li P; Li G; Liang A; Chi T; Huang X
    BMC Biol; 2021 Feb; 19(1):34. PubMed ID: 33602235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of TALE-adenine base editors in plants.
    Zhang D; Boch J
    Plant Biotechnol J; 2024 May; 22(5):1067-1077. PubMed ID: 37997697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered CBEs based on Macaca fascicularis A3A with improved properties for precise genome editing.
    Ren CY; Liu YS; He YS; Zhang LP; Rao JH; Rao Y; Chen JH
    Cell Rep; 2024 Mar; 43(3):113878. PubMed ID: 38431844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in
    Shelake RM; Pramanik D; Kim JY
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. APOBEC: From mutator to editor.
    Yang B; Li X; Lei L; Chen J
    J Genet Genomics; 2017 Sep; 44(9):423-437. PubMed ID: 28964683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
    Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D
    Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme cycling contributes to efficient induction of genome mutagenesis by the cytidine deaminase APOBEC3B.
    Adolph MB; Love RP; Feng Y; Chelico L
    Nucleic Acids Res; 2017 Nov; 45(20):11925-11940. PubMed ID: 28981865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. APOBEC3A is a prominent cytidine deaminase in breast cancer.
    Cortez LM; Brown AL; Dennis MA; Collins CD; Brown AJ; Mitchell D; Mertz TM; Roberts SA
    PLoS Genet; 2019 Dec; 15(12):e1008545. PubMed ID: 31841499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.