BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30593495)

  • 1. Pervasive Linked Selection and Intermediate-Frequency Alleles Are Implicated in an Evolve-and-Resequencing Experiment of
    Kelly JK; Hughes KA
    Genetics; 2019 Mar; 211(3):943-961. PubMed ID: 30593495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low concordance of short-term and long-term selection responses in experimental Drosophila populations.
    Langmüller AM; Schlötterer C
    Mol Ecol; 2020 Sep; 29(18):3466-3475. PubMed ID: 32762052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments.
    Tobler R; Franssen SU; Kofler R; Orozco-Terwengel P; Nolte V; Hermisson J; Schlötterer C
    Mol Biol Evol; 2014 Feb; 31(2):364-75. PubMed ID: 24150039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the Power to Identify the Genetic Basis of Complex Traits with Evolve and Resequence Studies.
    Vlachos C; Kofler R
    Mol Biol Evol; 2019 Dec; 36(12):2890-2905. PubMed ID: 31400203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The promise and deceit of genomic selection component analyses.
    Kelly JK
    Proc Biol Sci; 2021 Oct; 288(1961):20211812. PubMed ID: 34702075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allele frequency divergence reveals ubiquitous influence of positive selection in Drosophila.
    Bertram J
    PLoS Genet; 2021 Sep; 17(9):e1009833. PubMed ID: 34591854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking software tools for detecting and quantifying selection in evolve and resequencing studies.
    Vlachos C; Burny C; Pelizzola M; Borges R; Futschik A; Kofler R; Schlötterer C
    Genome Biol; 2019 Aug; 20(1):169. PubMed ID: 31416462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning transcript variation in Drosophila: abundance, isoforms, and alleles.
    Yang Y; Graze RM; Walts BM; Lopez CM; Baker HV; Wayne ML; Nuzhdin SV; McIntyre LM
    G3 (Bethesda); 2011 Nov; 1(6):427-36. PubMed ID: 22384353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic basis of adaptation to copper pollution in
    Everman ER; Macdonald SJ; Kelly JK
    Front Genet; 2023; 14():1144221. PubMed ID: 37082199
    [No Abstract]   [Full Text] [Related]  

  • 10. Resequencing of a Pekin duck breeding population provides insights into the genomic response to short-term artificial selection.
    Yu S; Liu Z; Li M; Zhou D; Hua P; Cheng H; Fan W; Xu Y; Liu D; Liang S; Zhang Y; Xie M; Tang J; Jiang Y; Hou S; Zhou Z
    Gigascience; 2023 Mar; 12():. PubMed ID: 36971291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexities of recapitulating polygenic effects in natural populations: replication of genetic effects on wing shape in artificially selected and wild-caught populations of Drosophila melanogaster.
    Pelletier K; Pitchers WR; Mammel A; Northrop-Albrecht E; Márquez EJ; Moscarella RA; Houle D; Dworkin I
    Genetics; 2023 Jul; 224(3):. PubMed ID: 36961731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genomic scale of fluctuating selection in a natural plant population.
    Kelly JK
    Evol Lett; 2022 Dec; 6(6):506-521. PubMed ID: 36579169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation in Outbred Sexual Yeast is Repeatable, Polygenic and Favors Rare Haplotypes.
    Linder RA; Zabanavar B; Majumder A; Hoang HC; Delgado VG; Tran R; La VT; Leemans SW; Long AD
    Mol Biol Evol; 2022 Dec; 39(12):. PubMed ID: 36366952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility and challenges of using whole-genome resequencing to detect emerging insect and mite resistance in agroecosystems.
    Fritz ML
    Evol Appl; 2022 Oct; 15(10):1505-1520. PubMed ID: 36330307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in
    Burny C; Nolte V; Dolezal M; Schlötterer C
    Proc Biol Sci; 2022 Oct; 289(1985):20221857. PubMed ID: 36259211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evolution reveals the synergistic genomic mechanisms of adaptation to ocean warming and acidification in a marine copepod.
    Brennan RS; deMayo JA; Dam HG; Finiguerra M; Baumann H; Buffalo V; Pespeni MH
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2201521119. PubMed ID: 36095205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of quantitative genetic variance in complex, multitrait phenotypes: the contribution of rare, large effect variants in 2 Drosophila species.
    Hine E; Runcie DE; Allen SL; Wang Y; Chenoweth SF; Blows MW; McGuigan K
    Genetics; 2022 Sep; 222(2):. PubMed ID: 35961029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollinator loss causes rapid adaptive evolution of selfing and dramatically reduces genome-wide genetic variability.
    Busch JW; Bodbyl-Roels S; Tusuubira S; Kelly JK
    Evolution; 2022 Sep; 76(9):2130-2144. PubMed ID: 35852008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod.
    Stern DB; Anderson NW; Diaz JA; Lee CE
    Nat Commun; 2022 Jul; 13(1):4024. PubMed ID: 35821220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Parallel Genomic Selection Response in Replicated Drosophila melanogaster Populations with Reduced Genetic Variation.
    Burny C; Nolte V; Dolezal M; Schlötterer C
    Genome Biol Evol; 2021 Nov; 13(11):. PubMed ID: 34694407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.