These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30593501)

  • 1. Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites.
    Manta B; Möller MN; Bonilla M; Deambrosi M; Grunberg K; Bellanda M; Comini MA; Ferrer-Sueta G
    J Biol Chem; 2019 Mar; 294(9):3235-3248. PubMed ID: 30593501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction potentials of protein disulfides and catalysis of glutathionylation and deglutathionylation by glutaredoxin enzymes.
    Ukuwela AA; Bush AI; Wedd AG; Xiao Z
    Biochem J; 2017 Nov; 474(22):3799-3815. PubMed ID: 28963348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1H, 13C and 15N resonance assignment of the cytosolic dithiol glutaredoxin 1 from the pathogen Trypanosoma brucei.
    Stefani M; Sturlese M; Manta B; Löhr F; Mammi S; Comini M; Bellanda M
    Biomol NMR Assign; 2016 Apr; 10(1):85-8. PubMed ID: 26386962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.
    Ceylan S; Seidel V; Ziebart N; Berndt C; Dirdjaja N; Krauth-Siegel RL
    J Biol Chem; 2010 Nov; 285(45):35224-37. PubMed ID: 20826822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.
    Comini MA; Krauth-Siegel RL; Bellanda M
    Antioxid Redox Signal; 2013 Sep; 19(7):708-22. PubMed ID: 22978520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux.
    Eckers E; Bien M; Stroobant V; Herrmann JM; Deponte M
    Biochemistry; 2009 Feb; 48(6):1410-23. PubMed ID: 19166312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.
    Manta B; Pavan C; Sturlese M; Medeiros A; Crispo M; Berndt C; Krauth-Siegel RL; Bellanda M; Comini MA
    Antioxid Redox Signal; 2013 Sep; 19(7):665-82. PubMed ID: 23259530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaredoxins in thiol/disulfide exchange.
    Lillig CH; Berndt C
    Antioxid Redox Signal; 2013 May; 18(13):1654-65. PubMed ID: 23231445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutaredoxin-deficiency confers bloodstream Trypanosoma brucei with improved thermotolerance.
    Musunda B; Benítez D; Dirdjaja N; Comini MA; Krauth-Siegel RL
    Mol Biochem Parasitol; 2015 Dec; 204(2):93-105. PubMed ID: 26854591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation.
    Gallogly MM; Starke DW; Mieyal JJ
    Antioxid Redox Signal; 2009 May; 11(5):1059-81. PubMed ID: 19119916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathionylation of trypanosomal thiol redox proteins.
    Melchers J; Dirdjaja N; Ruppert T; Krauth-Siegel RL
    J Biol Chem; 2007 Mar; 282(12):8678-94. PubMed ID: 17242409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1.
    Filser M; Comini MA; Molina-Navarro MM; Dirdjaja N; Herrero E; Krauth-Siegel RL
    Biol Chem; 2008 Jan; 389(1):21-32. PubMed ID: 18095866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin.
    Peskin AV; Pace PE; Behring JB; Paton LN; Soethoudt M; Bachschmid MM; Winterbourn CC
    J Biol Chem; 2016 Feb; 291(6):3053-62. PubMed ID: 26601956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of glutaredoxin enzyme activity and protein S-glutathionylation using fluorescent eosin-glutathione.
    Coppo L; Montano SJ; Padilla AC; Holmgren A
    Anal Biochem; 2016 Apr; 499():24-33. PubMed ID: 26836485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities.
    Xiao R; Lundström-Ljung J; Holmgren A; Gilbert HF
    J Biol Chem; 2005 Jun; 280(22):21099-106. PubMed ID: 15814611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutaredoxin accelerates glutathione-dependent folding of reduced ribonuclease A together with protein disulfide-isomerase.
    Lundström-Ljung J; Holmgren A
    J Biol Chem; 1995 Apr; 270(14):7822-8. PubMed ID: 7713872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase.
    Johansson C; Lillig CH; Holmgren A
    J Biol Chem; 2004 Feb; 279(9):7537-43. PubMed ID: 14676218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloroplasts lacking class I glutaredoxins are functional but show a delayed recovery of protein cysteinyl redox state after oxidative challenge.
    Bohle F; Rossi J; Tamanna SS; Jansohn H; Schlosser M; Reinhardt F; Brox A; Bethmann S; Kopriva S; Trentmann O; Jahns P; Deponte M; Schwarzländer M; Trost P; Zaffagnini M; Meyer AJ; Müller-Schüssele SJ
    Redox Biol; 2024 Feb; 69():103015. PubMed ID: 38183796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.