These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 30593562)
1. Data-driven quantitative modeling of bacterial active nematics. Li H; Shi XQ; Huang M; Chen X; Xiao M; Liu C; Chaté H; Zhang HP Proc Natl Acad Sci U S A; 2019 Jan; 116(3):777-785. PubMed ID: 30593562 [TBL] [Abstract][Full Text] [Related]
2. A machine learning approach to robustly determine director fields and analyze defects in active nematics. Li Y; Zarei Z; Tran PN; Wang Y; Baskaran A; Fraden S; Hagan MF; Hong P Soft Matter; 2024 Feb; 20(8):1869-1883. PubMed ID: 38318759 [TBL] [Abstract][Full Text] [Related]
3. Data-Driven Discovery of Active Nematic Hydrodynamics. Joshi C; Ray S; Lemma LM; Varghese M; Sharp G; Dogic Z; Baskaran A; Hagan MF Phys Rev Lett; 2022 Dec; 129(25):258001. PubMed ID: 36608242 [TBL] [Abstract][Full Text] [Related]
4. Machine learning active-nematic hydrodynamics. Colen J; Han M; Zhang R; Redford SA; Lemma LM; Morgan L; Ruijgrok PV; Adkins R; Bryant Z; Dogic Z; Gardel ML; de Pablo JJ; Vitelli V Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653956 [TBL] [Abstract][Full Text] [Related]
6. Orientational order of motile defects in active nematics. DeCamp SJ; Redner GS; Baskaran A; Hagan MF; Dogic Z Nat Mater; 2015 Nov; 14(11):1110-5. PubMed ID: 26280224 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous flow created by active topological defects. Brézin L; Risler T; Joanny JF Eur Phys J E Soft Matter; 2022 Apr; 45(4):30. PubMed ID: 35389081 [TBL] [Abstract][Full Text] [Related]
8. Self-regulation in self-propelled nematic fluids. Baskaran A; Marchetti MC Eur Phys J E Soft Matter; 2012 Sep; 35(9):95. PubMed ID: 23053844 [TBL] [Abstract][Full Text] [Related]
9. A nonequilibrium force can stabilize 2D active nematics. Maitra A; Srivastava P; Marchetti MC; Lintuvuori JS; Ramaswamy S; Lenz M Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6934-6939. PubMed ID: 29915056 [TBL] [Abstract][Full Text] [Related]
10. Optimal Control of Active Nematics. Norton MM; Grover P; Hagan MF; Fraden S Phys Rev Lett; 2020 Oct; 125(17):178005. PubMed ID: 33156653 [TBL] [Abstract][Full Text] [Related]
11. Nematic order condensation and topological defects in inertial active nematics. Saghatchi R; Yildiz M; Doostmohammadi A Phys Rev E; 2022 Jul; 106(1-1):014705. PubMed ID: 35974636 [TBL] [Abstract][Full Text] [Related]
13. Topological structure dynamics revealing collective evolution in active nematics. Shi XQ; Ma YQ Nat Commun; 2013; 4():3013. PubMed ID: 24346733 [TBL] [Abstract][Full Text] [Related]
14. Machine learning forecasting of active nematics. Zhou Z; Joshi C; Liu R; Norton MM; Lemma L; Dogic Z; Hagan MF; Fraden S; Hong P Soft Matter; 2021 Jan; 17(3):738-747. PubMed ID: 33220675 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical defect-induced condensation in active nematics. Krüger T; Maryshev I; Frey E Soft Matter; 2023 Nov; 19(46):8954-8964. PubMed ID: 37971530 [TBL] [Abstract][Full Text] [Related]
16. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime. Forest MG; Wang Q; Zhou R Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540 [TBL] [Abstract][Full Text] [Related]
17. The interplay between activity and filament flexibility determines the emergent properties of active nematics. Joshi A; Putzig E; Baskaran A; Hagan MF Soft Matter; 2018 Dec; 15(1):94-101. PubMed ID: 30520495 [TBL] [Abstract][Full Text] [Related]
18. Dispersion of activity at an active-passive nematic interface. Coelho RCV; Araújo NAM; Telo da Gama MM Soft Matter; 2022 Oct; 18(39):7642-7653. PubMed ID: 36169262 [TBL] [Abstract][Full Text] [Related]