BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30593782)

  • 1. Nanoparticle encapsulation increases the brain penetrance and duration of action of intranasal oxytocin.
    Oppong-Damoah A; Zaman RU; D'Souza MJ; Murnane KS
    Horm Behav; 2019 Feb; 108():20-29. PubMed ID: 30593782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle formulations that allow for sustained delivery and brain targeting of the neuropeptide oxytocin.
    Zaman RU; Mulla NS; Braz Gomes K; D'Souza C; Murnane KS; D'Souza MJ
    Int J Pharm; 2018 Sep; 548(1):698-706. PubMed ID: 30031864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification and Brain Targeting of Eugenol-Loaded Surface Modified Nanoparticles Through Intranasal Route in the Treatment of Cerebral Ischemia.
    Ahmad N; Ahmad R; Alam MA; Ahmad FJ
    Drug Res (Stuttg); 2018 Oct; 68(10):584-595. PubMed ID: 29669380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for intranasal oxytocin delivery to the brain: recent advances and future perspectives.
    Quintana DS; Smerud KT; Andreassen OA; Djupesland PG
    Ther Deliv; 2018 Jul; 9(7):515-525. PubMed ID: 29943688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging trends in the delivery of nanoformulated oxytocin across Blood-Brain barrier.
    Al-Suhaimi EA; Nawaz M; Khan FA; Aljafary MA; Baykal A; Homeida AM
    Int J Pharm; 2021 Nov; 609():121141. PubMed ID: 34597727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-mediated delivery of neurotoxin-II to the brain with intranasal administration: an effective strategy to improve antinociceptive activity of neurotoxin.
    Ruan Y; Yao L; Zhang B; Zhang S; Guo J
    Drug Dev Ind Pharm; 2012 Jan; 38(1):123-8. PubMed ID: 21721852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation and Evaluation of Neuroactive Drug Loaded Chitosan Nanoparticle for Nose to Brain Delivery: In-vitro Characterization and In-vivo Behavior Study.
    Qureshi M; Aqil M; Imam SS; Ahad A; Sultana Y
    Curr Drug Deliv; 2019; 16(2):123-135. PubMed ID: 30317997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of PLA-PEG nanoparticles manufacturing process on intestinal transporter PepT1 targeting and oxytocin transport.
    Gourdon B; Chemin C; Moreau A; Arnauld T; Delbos JM; Péan JM; Declèves X
    Eur J Pharm Biopharm; 2018 Aug; 129():122-133. PubMed ID: 29803721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting.
    Fazil M; Md S; Haque S; Kumar M; Baboota S; Sahni JK; Ali J
    Eur J Pharm Sci; 2012 Aug; 47(1):6-15. PubMed ID: 22561106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation and In-vivo Pharmacokinetic Consideration of Intranasal Microemulsion and Mucoadhesive Microemulsion of Rivastigmine for Brain Targeting.
    Shah B; Khunt D; Misra M; Padh H
    Pharm Res; 2018 Jan; 35(1):8. PubMed ID: 29294189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of Brain Bioavailability Using Thermoreversible Cubosomal Formulation.
    Jain H; Prabhakar B; Shende PK
    Mol Pharm; 2024 May; 21(5):2534-2543. PubMed ID: 38547474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.
    Muntimadugu E; Dhommati R; Jain A; Challa VG; Shaheen M; Khan W
    Eur J Pharm Sci; 2016 Sep; 92():224-34. PubMed ID: 27185298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double or Simple Emulsion Process to Encapsulate Hydrophilic Oxytocin Peptide in PLA-PEG Nanoparticles.
    Gourdon B; Declèves X; Péan JM; Chemin C
    Pharm Res; 2018 Mar; 35(4):82. PubMed ID: 29508092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.
    Agrawal M; Saraf S; Saraf S; Antimisiaris SG; Chougule MB; Shoyele SA; Alexander A
    J Control Release; 2018 Jul; 281():139-177. PubMed ID: 29772289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CSF and blood oxytocin concentration changes following intranasal delivery in macaque.
    Dal Monte O; Noble PL; Turchi J; Cummins A; Averbeck BB
    PLoS One; 2014; 9(8):e103677. PubMed ID: 25133536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intranasal oxytocin effects on social cognition: a critique.
    Evans SL; Dal Monte O; Noble P; Averbeck BB
    Brain Res; 2014 Sep; 1580():69-77. PubMed ID: 24239931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections.
    Gondil VS; Dube T; Panda JJ; Yennamalli RM; Harjai K; Chhibber S
    Int J Pharm; 2020 Jan; 573():118850. PubMed ID: 31759993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans.
    Striepens N; Kendrick KM; Hanking V; Landgraf R; Wüllner U; Maier W; Hurlemann R
    Sci Rep; 2013 Dec; 3():3440. PubMed ID: 24310737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery.
    Hao J; Zhao J; Zhang S; Tong T; Zhuang Q; Jin K; Chen W; Tang H
    Colloids Surf B Biointerfaces; 2016 Nov; 147():376-386. PubMed ID: 27566226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer's disease using Box-Behnken design.
    Jojo GM; Kuppusamy G; De A; Karri VVSNR
    Drug Dev Ind Pharm; 2019 Jul; 45(7):1061-1072. PubMed ID: 30922126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.