BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 30593803)

  • 41. Extraction of lignin-containing nanocellulose fibrils from date palm waste using a green solvent.
    Raza M; Jawaid M; Abu-Jdayil B
    Int J Biol Macromol; 2024 May; 267(Pt 1):131540. PubMed ID: 38608992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A review of nanocellulose as a new material towards environmental sustainability.
    Dhali K; Ghasemlou M; Daver F; Cass P; Adhikari B
    Sci Total Environ; 2021 Jun; 775():145871. PubMed ID: 33631573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanocellulose in green food packaging.
    Vilarinho F; Sanches Silva A; Vaz MF; Farinha JP
    Crit Rev Food Sci Nutr; 2018 Jun; 58(9):1526-1537. PubMed ID: 28125279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding cellulose dissolution: energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry.
    de Oliveira HF; Rinaldi R
    ChemSusChem; 2015 May; 8(9):1577-84. PubMed ID: 25857290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent.
    Xu A; Zhang Y; Zhao Y; Wang J
    Carbohydr Polym; 2013 Jan; 92(1):540-4. PubMed ID: 23218333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents.
    Domínguez de María P; Maugeri Z
    Curr Opin Chem Biol; 2011 Apr; 15(2):220-5. PubMed ID: 21112808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revolutionizing lignocellulosic biomass: A review of harnessing the power of ionic liquids for sustainable utilization and extraction.
    Norfarhana AS; Ilyas RA; Ngadi N; Othman MHD; Misenan MSM; Norrrahim MNF
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128256. PubMed ID: 38000585
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biocompatible ionic liquids: fundamental behaviours and applications.
    Gomes JM; Silva SS; Reis RL
    Chem Soc Rev; 2019 Jul; 48(15):4317-4335. PubMed ID: 31225558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrolysis of cellulose in SO₃H-functionalized ionic liquids.
    Tao F; Song H; Chou L
    Bioresour Technol; 2011 Oct; 102(19):9000-6. PubMed ID: 21757338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Processing and characterization of natural cellulose fibers/thermoset polymer composites.
    Thakur VK; Thakur MK
    Carbohydr Polym; 2014 Aug; 109():102-17. PubMed ID: 24815407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissolution of cellulose in room temperature ionic liquids: anion dependence.
    Payal RS; Bejagam KK; Mondal A; Balasubramanian S
    J Phys Chem B; 2015 Jan; 119(4):1654-9. PubMed ID: 25535797
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanocellulose, a tiny fiber with huge applications.
    Abitbol T; Rivkin A; Cao Y; Nevo Y; Abraham E; Ben-Shalom T; Lapidot S; Shoseyov O
    Curr Opin Biotechnol; 2016 Jun; 39():76-88. PubMed ID: 26930621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Paper actuators made with cellulose and hybrid materials.
    Kim J; Yun S; Mahadeva SK; Yun K; Yang SY; Maniruzzaman M
    Sensors (Basel); 2010; 10(3):1473-85. PubMed ID: 22294882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications.
    Baghaei B; Skrifvars M
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32575550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids.
    Yuan X; Cheng G
    Phys Chem Chem Phys; 2015 Dec; 17(47):31592-607. PubMed ID: 26562500
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids.
    Abushammala H; Mao J
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31940847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding.
    Yousefi H; Nishino T; Faezipour M; Ebrahimi G; Shakeri A
    Biomacromolecules; 2011 Nov; 12(11):4080-5. PubMed ID: 21939209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study.
    Zhao Y; Liu X; Wang J; Zhang S
    Chemphyschem; 2012 Sep; 13(13):3126-33. PubMed ID: 22730352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.