BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 30593803)

  • 61. Nanocellulose electroconductive composites.
    Shi Z; Phillips GO; Yang G
    Nanoscale; 2013 Apr; 5(8):3194-201. PubMed ID: 23512106
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multifilament cellulose/chitin blend yarn spun from ionic liquids.
    Mundsinger K; Müller A; Beyer R; Hermanutz F; Buchmeiser MR
    Carbohydr Polym; 2015 Oct; 131():34-40. PubMed ID: 26256157
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis.
    Ha SH; Mai NL; An G; Koo YM
    Bioresour Technol; 2011 Jan; 102(2):1214-9. PubMed ID: 20728347
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid.
    Soheilmoghaddam M; Wahit MU
    Int J Biol Macromol; 2013 Jul; 58():133-9. PubMed ID: 23567285
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dissolution enthalpies of cellulose in ionic liquids.
    Parviainen H; Parviainen A; Virtanen T; Kilpeläinen I; Ahvenainen P; Serimaa R; Grönqvist S; Maloney T; Maunu SL
    Carbohydr Polym; 2014 Nov; 113():67-76. PubMed ID: 25256460
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanocellulose: A Fundamental Material for Science and Technology Applications.
    Poulose A; Parameswaranpillai J; George JJ; Gopi JA; Krishnasamy S; Dominic C D M; Hameed N; Salim NV; Radoor S; Sienkiewicz N
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432134
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.
    Jayaramudu J; Reddy GS; Varaprasad K; Sadiku ER; Sinha Ray S; Varada Rajulu A
    Carbohydr Polym; 2013 Apr; 93(2):622-7. PubMed ID: 23499104
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Investigation on the Role of Ionic Liquids in the Output Signal Produced by Bacterial Cellulose-Based Mechanoelectrical Transducers.
    Di Pasquale G; Graziani S; Kurukunda S; Pollicino A; Trigona C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670269
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure reorganization of cellulose hydrogel by green solvent exchange for potential plastic replacement.
    Shu L; Zhang XF; Wang Z; Yao J
    Carbohydr Polym; 2022 Jan; 275():118695. PubMed ID: 34742422
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Green Energy Harvester from Vibrations Based on Bacterial Cellulose.
    Trigona C; Graziani S; Di Pasquale G; Pollicino A; Nisi R; Licciulli A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878206
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application.
    Morais ES; Silva NHCS; Sintra TE; Santos SAO; Neves BM; Almeida IF; Costa PC; Correia-Sá I; Ventura SPM; Silvestre AJD; Freire MG; Freire CSR
    Carbohydr Polym; 2019 Feb; 206():187-197. PubMed ID: 30553312
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents--a review.
    Kudłak B; Owczarek K; Namieśnik J
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):11975-92. PubMed ID: 26040266
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.
    El Achaby M; El Miri N; Aboulkas A; Zahouily M; Bilal E; Barakat A; Solhy A
    Int J Biol Macromol; 2017 Mar; 96():340-352. PubMed ID: 27988293
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cellulose Crystal Dissolution in Imidazolium-Based Ionic Liquids: A Theoretical Study.
    Uto T; Yamamoto K; Kadokawa JI
    J Phys Chem B; 2018 Jan; 122(1):258-266. PubMed ID: 29264920
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.
    Badgujar KC; Bhanage BM
    Bioresour Technol; 2015 Feb; 178():2-18. PubMed ID: 25451772
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Determining relative rates of cellulose dissolution in ionic liquids through in situ viscosity measurement.
    Cruz H; Fanselow M; Holbrey JD; Seddon KR
    Chem Commun (Camb); 2012 Jun; 48(45):5620-2. PubMed ID: 22531832
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exploring nanocellulose frontiers: A comprehensive review of its extraction, properties, and pioneering applications in the automotive and biomedical industries.
    Yusuf J; Sapuan SM; Ansari MA; Siddiqui VU; Jamal T; Ilyas RA; Hassan MR
    Int J Biol Macromol; 2024 Jan; 255():128121. PubMed ID: 37984579
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films.
    Abdulkhani A; Marvast EH; Ashori A; Karimi AN
    Carbohydr Polym; 2013 Jun; 95(1):57-63. PubMed ID: 23618239
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthesis of cellulose methylcarbonate in ionic liquids using dimethylcarbonate.
    Labafzadeh SR; Helminen KJ; Kilpeläinen I; King AW
    ChemSusChem; 2015 Jan; 8(1):77-81. PubMed ID: 25378289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.