These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 30593803)

  • 81. Mixtures of ionic liquids as more efficient media for cellulose dissolution.
    Stolarska O; Pawlowska-Zygarowicz A; Soto A; Rodríguez H; Smiglak M
    Carbohydr Polym; 2017 Dec; 178():277-285. PubMed ID: 29050595
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding.
    Shang NG; Papakonstantinou P; Sharma S; Lubarsky G; Li M; McNeill DW; Quinn AJ; Zhou W; Blackley R
    Chem Commun (Camb); 2012 Feb; 48(13):1877-9. PubMed ID: 22228444
    [TBL] [Abstract][Full Text] [Related]  

  • 83. MechanoAPI-ILs: Pharmaceutical Ionic Liquids Obtained through Mechanochemical Synthesis.
    Martins IC; Oliveira MC; Diogo HP; Branco LC; Duarte MT
    ChemSusChem; 2017 Apr; 10(7):1360-1363. PubMed ID: 28199779
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Improving Cellulose Dissolution in Ionic Liquids by Tuning the Size of the Ions: Impact of the Length of the Alkyl Chains in Tetraalkylammonium Carboxylate.
    Meng X; Devemy J; Verney V; Gautier A; Husson P; Andanson JM
    ChemSusChem; 2017 Apr; 10(8):1749-1760. PubMed ID: 28134497
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems.
    Zhao Y; Liu X; Wang J; Zhang S
    J Phys Chem B; 2013 Aug; 117(30):9042-9. PubMed ID: 23829272
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Ionic Liquids as Designed, Multi-Functional Plasticizers for Biodegradable Polymeric Materials: A Mini-Review.
    Shamshina JL; Berton P
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338998
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Solubility of lignin and chitin in ionic liquids and their biomedical applications.
    Singh SK
    Int J Biol Macromol; 2019 Jul; 132():265-277. PubMed ID: 30930266
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications.
    Zwawi M
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33466725
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature.
    Luo N; Lv Y; Wang D; Zhang J; Wu J; He J; Zhang J
    Chem Commun (Camb); 2012 Jun; 48(50):6283-5. PubMed ID: 22592351
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems.
    Froschauer C; Hummel M; Iakovlev M; Roselli A; Schottenberger H; Sixta H
    Biomacromolecules; 2013 Jun; 14(6):1741-50. PubMed ID: 23651266
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose?
    Rinaldi R; Meine N; vom Stein J; Palkovits R; Schüth F
    ChemSusChem; 2010 Feb; 3(2):266-76. PubMed ID: 20155777
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Development of regenerated cellulose/halloysites nanocomposites via ionic liquids.
    Hanid NA; Wahit MU; Guo Q; Mahmoodian S; Soheilmoghaddam M
    Carbohydr Polym; 2014 Jan; 99():91-7. PubMed ID: 24274483
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.
    Trovatti E; Carvalho AJ; Ribeiro SJ; Gandini A
    Biomacromolecules; 2013 Aug; 14(8):2667-74. PubMed ID: 23782026
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dissolution and regeneration of hide powder/cellulose composite in Gemini imidazolium ionic liquid.
    Wang G; Guo J; Zhuang L; Wang Y; Xu B
    Int J Biol Macromol; 2015 May; 76():70-9. PubMed ID: 25727745
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Functionalized bacterial cellulose derivatives and nanocomposites.
    Hu W; Chen S; Yang J; Li Z; Wang H
    Carbohydr Polym; 2014 Jan; 101():1043-60. PubMed ID: 24299873
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Recent advances in biodegradable nanocomposites.
    Pandey JK; Kumar AP; Misra M; Mohanty AK; Drzal LT; Singh RP
    J Nanosci Nanotechnol; 2005 Apr; 5(4):497-526. PubMed ID: 16004113
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.
    Thomas MG; Abraham E; Jyotishkumar P; Maria HJ; Pothen LA; Thomas S
    Int J Biol Macromol; 2015 Nov; 81():768-77. PubMed ID: 26318667
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites.
    Ullah H; Wahid F; Santos HA; Khan T
    Carbohydr Polym; 2016 Oct; 150():330-52. PubMed ID: 27312644
    [TBL] [Abstract][Full Text] [Related]  

  • 100. An insight into the influence of hydrogen bond acceptors on cellulose/1-allyl-3-methyl imidazolium chloride solution.
    Jiang J; Xiao Y; Huang W; Gong P; Peng S; He J; Fan M; Wang K
    Carbohydr Polym; 2017 Dec; 178():295-301. PubMed ID: 29050597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.