BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30593816)

  • 1. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers.
    Hao M; Fan G; Zhang Y; Xin Y; Zhang L
    Int J Biol Macromol; 2019 Apr; 126():539-548. PubMed ID: 30593816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides.
    Chen J; Guo Z; Xin Y; Shi Y; Li Y; Gu Z; Zhong J; Guo X; Zhang L
    Enzyme Microb Technol; 2021 May; 146():109766. PubMed ID: 33812563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MOF@MnO
    Xu D; Li C; Zi Y; Jiang D; Qu F; Zhao XE
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33836512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability.
    Nadar SS; Gawas SD; Rathod VK
    Int J Biol Macromol; 2016 Nov; 92():660-669. PubMed ID: 27343706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification.
    Yu Y; Fei X; Tian J; Xu L; Wang X; Wang Y
    Colloids Surf B Biointerfaces; 2015 Jun; 130():299-304. PubMed ID: 25935264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization and stabilization of cholesterol oxidase on modified sepharose particles.
    Chen Y; Xin Y; Yang H; Zhang L; Zhang Y; Xia X; Tong Y; Wang W
    Int J Biol Macromol; 2013 May; 56():6-13. PubMed ID: 23395650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes.
    Altinkaynak C; Kocazorbaz E; Özdemir N; Zihnioglu F
    Int J Biol Macromol; 2018 Apr; 109():205-211. PubMed ID: 29253544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically modified Sepharose as support for the immobilization of cholesterol oxidase.
    Yang H; Chen Y; Xin Y; Zhang L; Zhang Y; Wang W
    J Microbiol Biotechnol; 2013 Sep; 23(9):1212-20. PubMed ID: 23711516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitroxide-Modified Protein-Incorporated Nanoflowers with Dual Enzyme-Like Activities.
    Wu Z; Zhang S; Wang X; Cai C; Chen G; Ma L
    Int J Nanomedicine; 2020; 15():263-273. PubMed ID: 32021179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol.
    Lin Z; Xiao Y; Yin Y; Hu W; Liu W; Yang H
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10775-82. PubMed ID: 24937087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation and catalytic properties of catalase-inorganic hybrid nanoflowers].
    Pang J; Jiang M; Liu Y; Li M; Sun J; Wang C; Li X
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4705-4718. PubMed ID: 36593204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and demonstration of functionalized inorganic-organic hybrid copper phosphate nanoflowers for mimicking the oxidative reactions of metalloenzymes by working as a nanozyme.
    Nag R; Rao CP
    J Mater Chem B; 2021 Apr; 9(16):3523-3532. PubMed ID: 33909739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes.
    Lee HR; Chung M; Kim MI; Ha SH
    Enzyme Microb Technol; 2017 Oct; 105():24-29. PubMed ID: 28756857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive.
    Gulmez C; Altinkaynak C; Özdemir N; Atakisi O
    Int J Biol Macromol; 2018 Nov; 119():803-810. PubMed ID: 30077667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a Multienzymatic Cascade Reaction System of Coimmobilized Hybrid Nanoflowers for Efficient Conversion of Starch into Gluconic Acid.
    Han J; Luo P; Wang L; Wu J; Li C; Wang Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15023-15033. PubMed ID: 32156109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of a new Brevibacterium sterolicum cholesterol oxidase produced by E. coli MM294/pnH10.
    Fujishiro K; Uchida H; Shimokawa K; Nakano M; Sano F; Ohta T; Kayahara N; Aisaka K; Uwajima T
    FEMS Microbiol Lett; 2002 Oct; 215(2):243-8. PubMed ID: 12399041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Catalytic Performance of Pectate Lyase Through Pectate Lyase/Cu
    Wu P; Luo F; Lu Z; Zhan Z; Zhang G
    Front Bioeng Biotechnol; 2020; 8():280. PubMed ID: 32309279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties.
    Somturk B; Yilmaz I; Altinkaynak C; Karatepe A; Özdemir N; Ocsoy I
    Enzyme Microb Technol; 2016 May; 86():134-42. PubMed ID: 26992802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and Computational Analysis of Synthesis Conditions of Hybrid Nanoflowers for Lipase Immobilization.
    Souza DES; Santos LMF; Freitas JPA; Almeida LC; Santos JCB; Souza RL; Pereira MM; Lima ÁS; Soares CMF
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of the thermostability and enzymatic activity of cholesterol oxidase by site-directed mutagenesis.
    Sun Y; Yang H; Wang W
    Biotechnol Lett; 2011 Oct; 33(10):2049-55. PubMed ID: 21701916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.