BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30593990)

  • 1. Species-species interactions modulate copper toxicity under different visible light conditions.
    Cheloni G; Gagnaux V; Slaveykova VI
    Ecotoxicol Environ Saf; 2019 Apr; 170():771-777. PubMed ID: 30593990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.
    Cheloni G; Marti E; Slaveykova VI
    Aquat Toxicol; 2016 Jan; 170():120-128. PubMed ID: 26655656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii.
    Melegari SP; Perreault F; Costa RH; Popovic R; Matias WG
    Aquat Toxicol; 2013 Oct; 142-143():431-40. PubMed ID: 24113166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms.
    Santschi C; Von Moos N; Koman VB; Slaveykova VI; Bowen P; Martin OJ
    J Nanobiotechnology; 2017 Mar; 15(1):19. PubMed ID: 28270155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii.
    Cheloni G; Cosio C; Slaveykova VI
    Aquat Toxicol; 2014 Oct; 155():275-82. PubMed ID: 25072593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure.
    von Moos N; Maillard L; Slaveykova VI
    Aquat Toxicol; 2015 Apr; 161():267-75. PubMed ID: 25731685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii.
    Jiang Y; Zhu Y; Hu Z; Lei A; Wang J
    Ecotoxicology; 2016 Sep; 25(7):1417-25. PubMed ID: 27395008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.
    Saison C; Perreault F; Daigle JC; Fortin C; Claverie J; Morin M; Popovic R
    Aquat Toxicol; 2010 Jan; 96(2):109-14. PubMed ID: 19883948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper status of exposed microorganisms influences susceptibility to metallic nanoparticles.
    Reyes VC; Spitzmiller MR; Hong-Hermesdorf A; Kropat J; Damoiseaux RD; Merchant SS; Mahendra S
    Environ Toxicol Chem; 2016 May; 35(5):1148-58. PubMed ID: 26387648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii.
    Fischer BB; Rüfenacht K; Dannenhauer K; Wiesendanger M; Eggen RI
    Environ Toxicol Chem; 2010 Oct; 29(10):2211-9. PubMed ID: 20872684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan.
    González-Pleiter M; Rioboo C; Reguera M; Abreu I; Leganés F; Cid Á; Fernández-Piñas F
    Aquat Toxicol; 2017 May; 186():50-66. PubMed ID: 28249228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress.
    Cheloni G; Slaveykova VI
    Aquat Toxicol; 2021 Feb; 231():105711. PubMed ID: 33338702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alleviation of copper-induced oxidative damage in Chlamydomonas reinhardtii by carbon monoxide.
    Zheng Q; Meng Q; Wei YY; Yang ZM
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):220-7. PubMed ID: 20859622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Cu2+, Ni2+, Pb2+, Zn2+ and pentachlorophenol on photosynthesis and motility in Chlamydomonas reinhardtii in short-term exposure experiments.
    Danilov RA; Ekelund NG
    BMC Ecol; 2001; 1():1. PubMed ID: 11387031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa.
    Mao F; He Y; Kushmaro A; Gin KY
    Aquat Toxicol; 2017 Dec; 193():1-8. PubMed ID: 28992446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach.
    Jamers A; Blust R; De Coen W; Griffin JL; Jones OA
    Biometals; 2013 Oct; 26(5):731-40. PubMed ID: 23775669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions.
    Fischer BB; Wiesendanger M; Eggen RI
    Plant Cell Physiol; 2006 Aug; 47(8):1135-45. PubMed ID: 16857695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities.
    Siebman C; Velev OD; Slaveykova VI
    Biosensors (Basel); 2017 Jan; 7(1):. PubMed ID: 28067772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii.
    Wang WX; Dei RC
    Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.