These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1058 related articles for article (PubMed ID: 30593996)
1. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis. Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996 [TBL] [Abstract][Full Text] [Related]
2. Physiological Adaptive Strategies of Oil Seed Crop Wang Y; Jie W; Peng X; Hua X; Yan X; Zhou Z; Lin J Front Plant Sci; 2018; 9():1939. PubMed ID: 30687346 [No Abstract] [Full Text] [Related]
3. Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew. Ponte LF; Silva AL; Carvalho FE; Maia JM; Voigt EL; Silveira JA J Plant Physiol; 2014 Sep; 171(15):1362-71. PubMed ID: 25046757 [TBL] [Abstract][Full Text] [Related]
4. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589 [TBL] [Abstract][Full Text] [Related]
5. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
6. Response of sugar metabolism in the cotyledons and roots of Ricinus communis subjected to salt stress. Li Y; Chu Y; Yao K; Shi C; Deng X; Lin J Plant Biol (Stuttg); 2023 Jan; 25(1):62-71. PubMed ID: 36209370 [TBL] [Abstract][Full Text] [Related]
7. Untargeted LC-MS-based metabolomics revealed specific metabolic changes in cotyledons and roots of Ricinus communis during early seedling establishment under salt stress. Wang Y; Liu J; Yang F; Zhou W; Mao S; Lin J; Yan X Plant Physiol Biochem; 2021 Jun; 163():108-118. PubMed ID: 33826995 [TBL] [Abstract][Full Text] [Related]
8. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. Cheng ZW; Chen ZY; Yan X; Bian YW; Deng X; Yan YM J Proteomics; 2018 Jan; 170():1-13. PubMed ID: 28986270 [TBL] [Abstract][Full Text] [Related]
9. Salt-stress induced proteomic changes of two contrasting alfalfa cultivars during germination stage. Gao Y; Cui Y; Long R; Sun Y; Zhang T; Yang Q; Kang J J Sci Food Agric; 2019 Feb; 99(3):1384-1396. PubMed ID: 30144052 [TBL] [Abstract][Full Text] [Related]
10. Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress. Galal A Acta Biol Hung; 2017 Mar; 68(1):73-87. PubMed ID: 28322092 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. Wang L; Liu X; Liang M; Tan F; Liang W; Chen Y; Lin Y; Huang L; Xing J; Chen W PLoS One; 2014; 9(1):e83141. PubMed ID: 24416157 [TBL] [Abstract][Full Text] [Related]
12. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Lima Neto MC; Lobo AK; Martins MO; Fontenele AV; Silveira JA J Plant Physiol; 2014 Jan; 171(1):23-30. PubMed ID: 24094996 [TBL] [Abstract][Full Text] [Related]
13. Comparative Proteomic Analysis Reveals the Regulatory Effects of H Liu YL; Shen ZJ; Simon M; Li H; Ma DN; Zhu XY; Zheng HL Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878013 [TBL] [Abstract][Full Text] [Related]
14. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery. Pérez-Pérez JG; Syvertsen JP; Botía P; García-Sánchez F Ann Bot; 2007 Aug; 100(2):335-45. PubMed ID: 17575285 [TBL] [Abstract][Full Text] [Related]
15. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. Zhu D; Luo F; Zou R; Liu J; Yan Y J Proteomics; 2021 Mar; 234():104097. PubMed ID: 33401000 [TBL] [Abstract][Full Text] [Related]
17. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Wang X; Chang L; Wang B; Wang D; Li P; Wang L; Yi X; Huang Q; Peng M; Guo A Mol Cell Proteomics; 2013 Aug; 12(8):2174-95. PubMed ID: 23660471 [TBL] [Abstract][Full Text] [Related]
18. Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Chen W; Guo C; Hussain S; Zhu B; Deng F; Xue Y; Geng M; Wu L Environ Sci Pollut Res Int; 2016 Jan; 23(2):1254-64. PubMed ID: 26358207 [TBL] [Abstract][Full Text] [Related]
19. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Sengupta S; Majumder AL Planta; 2009 Mar; 229(4):911-29. PubMed ID: 19130079 [TBL] [Abstract][Full Text] [Related]
20. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K Liu J; Li G; Chen L; Gu J; Wu H; Li Z J Nanobiotechnology; 2021 May; 19(1):153. PubMed ID: 34034767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]