BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1099 related articles for article (PubMed ID: 30593996)

  • 1. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis.
    Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J
    Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Adaptive Strategies of Oil Seed Crop
    Wang Y; Jie W; Peng X; Hua X; Yan X; Zhou Z; Lin J
    Front Plant Sci; 2018; 9():1939. PubMed ID: 30687346
    [No Abstract]   [Full Text] [Related]  

  • 3. Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew.
    Ponte LF; Silva AL; Carvalho FE; Maia JM; Voigt EL; Silveira JA
    J Plant Physiol; 2014 Sep; 171(15):1362-71. PubMed ID: 25046757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of sugar metabolism in the cotyledons and roots of Ricinus communis subjected to salt stress.
    Li Y; Chu Y; Yao K; Shi C; Deng X; Lin J
    Plant Biol (Stuttg); 2023 Jan; 25(1):62-71. PubMed ID: 36209370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untargeted LC-MS-based metabolomics revealed specific metabolic changes in cotyledons and roots of Ricinus communis during early seedling establishment under salt stress.
    Wang Y; Liu J; Yang F; Zhou W; Mao S; Lin J; Yan X
    Plant Physiol Biochem; 2021 Jun; 163():108-118. PubMed ID: 33826995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses.
    Cheng ZW; Chen ZY; Yan X; Bian YW; Deng X; Yan YM
    J Proteomics; 2018 Jan; 170():1-13. PubMed ID: 28986270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-stress induced proteomic changes of two contrasting alfalfa cultivars during germination stage.
    Gao Y; Cui Y; Long R; Sun Y; Zhang T; Yang Q; Kang J
    J Sci Food Agric; 2019 Feb; 99(3):1384-1396. PubMed ID: 30144052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress.
    Galal A
    Acta Biol Hung; 2017 Mar; 68(1):73-87. PubMed ID: 28322092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress.
    Wang L; Liu X; Liang M; Tan F; Liang W; Chen Y; Lin Y; Huang L; Xing J; Chen W
    PLoS One; 2014; 9(1):e83141. PubMed ID: 24416157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.
    Lima Neto MC; Lobo AK; Martins MO; Fontenele AV; Silveira JA
    J Plant Physiol; 2014 Jan; 171(1):23-30. PubMed ID: 24094996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Proteomic Analysis Reveals the Regulatory Effects of H
    Liu YL; Shen ZJ; Simon M; Li H; Ma DN; Zhu XY; Zheng HL
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.
    Pérez-Pérez JG; Syvertsen JP; Botía P; García-Sánchez F
    Ann Bot; 2007 Aug; 100(2):335-45. PubMed ID: 17575285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses.
    Zhu D; Luo F; Zou R; Liu J; Yan Y
    J Proteomics; 2021 Mar; 234():104097. PubMed ID: 33401000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity.
    Voigt EL; Almeida TD; Chagas RM; Ponte LF; Viégas RA; Silveira JA
    J Plant Physiol; 2009 Jan; 166(1):80-9. PubMed ID: 18448194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance.
    Wang X; Chang L; Wang B; Wang D; Li P; Wang L; Yi X; Huang Q; Peng M; Guo A
    Mol Cell Proteomics; 2013 Aug; 12(8):2174-95. PubMed ID: 23660471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage.
    Chen W; Guo C; Hussain S; Zhu B; Deng F; Xue Y; Geng M; Wu L
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1254-64. PubMed ID: 26358207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach.
    Sengupta S; Majumder AL
    Planta; 2009 Mar; 229(4):911-29. PubMed ID: 19130079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K
    Liu J; Li G; Chen L; Gu J; Wu H; Li Z
    J Nanobiotechnology; 2021 May; 19(1):153. PubMed ID: 34034767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.