These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. Gorcek Z; Erdal S J Sci Food Agric; 2015 Nov; 95(14):2811-7. PubMed ID: 25427940 [TBL] [Abstract][Full Text] [Related]
24. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Sheteiwy MS; Shao H; Qi W; Daly P; Sharma A; Shaghaleh H; Hamoud YA; El-Esawi MA; Pan R; Wan Q; Lu H J Sci Food Agric; 2021 Mar; 101(5):2027-2041. PubMed ID: 32949013 [TBL] [Abstract][Full Text] [Related]
25. Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Ibrahim W; Qiu CW; Zhang C; Cao F; Shuijin Z; Wu F Physiol Plant; 2019 Feb; 165(2):155-168. PubMed ID: 30006979 [TBL] [Abstract][Full Text] [Related]
26. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874 [TBL] [Abstract][Full Text] [Related]
27. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves. Jia H; Shao M; He Y; Guan R; Chu P; Jiang H PLoS One; 2015; 10(12):e0144808. PubMed ID: 26691228 [TBL] [Abstract][Full Text] [Related]
28. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Farhangi-Abriz S; Ghassemi-Golezani K Ecotoxicol Environ Saf; 2018 Jan; 147():1010-1016. PubMed ID: 29976003 [TBL] [Abstract][Full Text] [Related]
29. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Chang B; Yang L; Cong W; Zu Y; Tang Z Plant Physiol Biochem; 2014 Apr; 77():140-8. PubMed ID: 24589477 [TBL] [Abstract][Full Text] [Related]
30. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996 [TBL] [Abstract][Full Text] [Related]
32. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Ghaffari A; Gharechahi J; Nakhoda B; Salekdeh GH J Plant Physiol; 2014 Jan; 171(1):31-44. PubMed ID: 24094368 [TBL] [Abstract][Full Text] [Related]
33. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Moradi F; Ismail AM Ann Bot; 2007 Jun; 99(6):1161-73. PubMed ID: 17428832 [TBL] [Abstract][Full Text] [Related]
34. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars. Chakraborty K; Bhaduri D; Meena HN; Kalariya K Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338 [TBL] [Abstract][Full Text] [Related]
35. Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance. Laffray X; Alaoui-Sehmer L; Bourioug M; Bourgeade P; Alaoui-Sossé B; Aleya L Environ Monit Assess; 2018 Apr; 190(5):266. PubMed ID: 29619577 [TBL] [Abstract][Full Text] [Related]
36. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. Cai ZQ; Gao Q BMC Plant Biol; 2020 Feb; 20(1):70. PubMed ID: 32050903 [TBL] [Abstract][Full Text] [Related]
37. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). Siddiqi EH; Ashraf M; Al-Qurainy F; Akram NA J Sci Food Agric; 2011 Dec; 91(15):2785-93. PubMed ID: 21717466 [TBL] [Abstract][Full Text] [Related]
38. Insight into salt tolerance mechanisms of the halophyte Achras sapota: an important fruit tree for agriculture in coastal areas. Rahman MM; Mostofa MG; Rahman MA; Miah MG; Saha SR; Karim MA; Keya SS; Akter M; Islam M; Tran LP Protoplasma; 2019 Jan; 256(1):181-191. PubMed ID: 30062531 [TBL] [Abstract][Full Text] [Related]
39. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701 [TBL] [Abstract][Full Text] [Related]
40. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Silva EN; Silveira JA; Rodrigues CR; Viégas RA Plant Biol (Stuttg); 2015 Sep; 17(5):1023-9. PubMed ID: 25865670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]