These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30594014)

  • 1. A convolutional neural network Cascade for plantar pressure images registration.
    Xia Y; Li Y; Xun L; Yan Q; Zhang D
    Gait Posture; 2019 Feb; 68():403-408. PubMed ID: 30594014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel framework for registration of pedobarographic image data.
    Oliveira FP; Tavares JM
    Med Biol Eng Comput; 2011 Mar; 49(3):313-23. PubMed ID: 21046271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformable Image Registration based on Similarity-Steered CNN Regression.
    Cao X; Yang J; Zhang J; Nie D; Kim MJ; Wang Q; Shen D
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():300-308. PubMed ID: 29250613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image synthesis-based multi-modal image registration framework by using deep fully convolutional networks.
    Liu X; Jiang D; Wang M; Song Z
    Med Biol Eng Comput; 2019 May; 57(5):1037-1048. PubMed ID: 30523534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Registration of plantar pressure images.
    Oliveira FP; Tavares JM
    Int J Numer Method Biomed Eng; 2012; 28(6-7):589-603. PubMed ID: 25364840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of seven methods of within-subjects rigid-body pedobarographic image registration.
    Pataky TC; Goulermas JY; Crompton RH
    J Biomech; 2008 Oct; 41(14):3085-9. PubMed ID: 18790481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural network approach for fast, automated quantification of DIR performance.
    Neylon J; Min Y; Low DA; Santhanam A
    Med Phys; 2017 Aug; 44(8):4126-4138. PubMed ID: 28477340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study.
    Lv J; Yang M; Zhang J; Wang X
    Br J Radiol; 2018 Feb; 91(1083):20170788. PubMed ID: 29261334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid pedobarographic image registration based on contour curvature and optimization.
    Oliveira FP; Tavares JM; Pataky TC
    J Biomech; 2009 Nov; 42(15):2620-3. PubMed ID: 19647829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weakly-supervised convolutional neural networks for multimodal image registration.
    Hu Y; Modat M; Gibson E; Li W; Ghavami N; Bonmati E; Wang G; Bandula S; Moore CM; Emberton M; Ourselin S; Noble JA; Barratt DC; Vercauteren T
    Med Image Anal; 2018 Oct; 49():1-13. PubMed ID: 30007253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
    Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D
    Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear spatial warping for between-subjects pedobarographic image registration.
    Pataky TC; Keijsers NL; Goulermas JY; Crompton RH
    Gait Posture; 2009 Apr; 29(3):477-82. PubMed ID: 19112023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
    Ma J; Wu F; Jiang T; Zhao Q; Kong D
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1895-1910. PubMed ID: 28762196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human peripheral blood leukocyte classification method based on convolutional neural network and data augmentation.
    Wang Y; Cao Y
    Med Phys; 2020 Jan; 47(1):142-151. PubMed ID: 31691975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative location prediction in CT scan images using convolutional neural networks.
    Guo J; Du H; Zhu J; Yan T; Qiu B
    Comput Methods Programs Biomed; 2018 Jul; 160():43-49. PubMed ID: 29728245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifocus Image Fusion Using Wavelet-Domain-Based Deep CNN.
    Li J; Yuan G; Fan H
    Comput Intell Neurosci; 2019; 2019():4179397. PubMed ID: 30915109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDReg-Net: Multi-resolution diffeomorphic image registration using fully convolutional networks with deep self-supervision.
    Li H; Fan Y;
    Hum Brain Mapp; 2022 May; 43(7):2218-2231. PubMed ID: 35072327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Complete Ground Reaction Forces and Moments During Gait With Insole Plantar Pressure Information Using a Wavelet Neural Network.
    Sim T; Kwon H; Oh SE; Joo SB; Choi A; Heo HM; Kim K; Mun JH
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26102486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.