BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30594088)

  • 1. An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters.
    Seelen LMS; Flaim G; Keuskamp J; Teurlincx S; Arias Font R; Tolunay D; Fránková M; Šumberová K; Temponeras M; Lenhardt M; Jennings E; de Senerpont Domis LN
    Water Res; 2019 Mar; 151():31-43. PubMed ID: 30594088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale.
    Trevathan-Tackett SM; Kepfer-Rojas S; Engelen AH; York PH; Ola A; Li J; Kelleway JJ; Jinks KI; Jackson EL; Adame MF; Pendall E; Lovelock CE; Connolly RM; Watson A; Visby I; Trethowan A; Taylor B; Roberts TNB; Petch J; Farrington L; Djukic I; Macreadie PI
    Sci Total Environ; 2021 Aug; 782():146819. PubMed ID: 33838377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the Tea Bag Index to determine how two human pharmaceuticals affect litter decomposition by aquatic microorganisms.
    Hunter WR; Williamson A; Sarneel JM
    Ecotoxicology; 2021 Aug; 30(6):1272-1278. PubMed ID: 34131825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposition rate and stabilization across six tundra vegetation types exposed to >20 years of warming.
    Sarneel JM; Sundqvist MK; Molau U; Björkman MP; Alatalo JM
    Sci Total Environ; 2020 Jul; 724():138304. PubMed ID: 32408462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization.
    Sarneel JM; Hefting MM; Sandén T; van den Hoogen J; Routh D; Adhikari BS; Alatalo JM; Aleksanyan A; Althuizen IHJ; Alsafran MHSA; Atkins JW; Augusto L; Aurela M; Azarov AV; Barrio IC; Beier C; Bejarano MD; Benham SE; Berg B; Bezler NV; Björnsdóttir K; Bolinder MA; Carbognani M; Cazzolla Gatti R; Chelli S; Chistotin MV; Christiansen CT; Courtois P; Crowther TW; Dechoum MS; Djukic I; Duddigan S; Egerton-Warburton LM; Fanin N; Fantappiè M; Fares S; Fernandes GW; Filippova NV; Fliessbach A; Fuentes D; Godoy R; Grünwald T; Guzmán G; Hawes JE; He Y; Hero JM; Hess LL; Hogendoorn K; Høye TT; Jans WWP; Jónsdóttir IS; Keller S; Kepfer-Rojas S; Kuz'menko NN; Larsen KS; Laudon H; Lembrechts JJ; Li J; Limousin JM; Lukin SM; Marques R; Marín C; McDaniel MD; Meek Q; Merzlaya GE; Michelsen A; Montagnani L; Mueller P; Murugan R; Myers-Smith IH; Nolte S; Ochoa-Hueso R; Okafor BN; Okorkov VV; Onipchenko VG; Orozco MC; Parkhurst T; Peres CA; Petit Bon M; Petraglia A; Pingel M; Rebmann C; Scheffers BR; Schmidt I; Scholes MC; Sheffer E; Shevtsova LK; Smith SW; Sofo A; Stevenson PR; Strouhalová B; Sundsdal A; Sühs RB; Tamene G; Thomas HJD; Tolunay D; Tomaselli M; Tresch S; Tucker DL; Ulyshen MD; Valdecantos A; Vandvik V; Vanguelova EI; Verheyen K; Wang X; Yahdjian L; Yumashev XS; Keuskamp JA
    Ecol Lett; 2024 May; 27(5):e14415. PubMed ID: 38712683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of initial leaching for estimates of mass loss and microbial decomposition-Call for an increased nuance.
    Lind L; Harbicht A; Bergman E; Edwartz J; Eckstein RL
    Ecol Evol; 2022 Aug; 12(8):e9118. PubMed ID: 35923944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil C/N ratios cause opposing effects in forests compared to grasslands on decomposition rates and stabilization factors in southern European ecosystems.
    Blanco JA; Durán M; Luquin J; San Emeterio L; Yeste A; Canals RM
    Sci Total Environ; 2023 Aug; 888():164118. PubMed ID: 37187397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of ozone depletion and climate change on biogeochemical cycles.
    Zepp RG; Callaghan TV; Erickson DJ
    Photochem Photobiol Sci; 2003 Jan; 2(1):51-61. PubMed ID: 12659539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme kinetics inform about mechanistic changes in tea litter decomposition across gradients in land-use intensity in Central German grasslands.
    Meyer UN; Tischer A; Freitag M; Klaus VH; Kleinebecker T; Oelmann Y; Kandeler E; Hölzel N; Hamer U
    Sci Total Environ; 2022 Aug; 836():155748. PubMed ID: 35526633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extension of the soil monitoring network via tea bag initiatives: A 3000 km latitudinal gradient in European Russia.
    Ivashchenko K; Gavrichkova O; Korneykova M; Vasenev V; Salnik N; Saltan N; Sarzhanov D; Babenko E; Urabova S; Slukovskaya M; Zavodskikh M; Gorbov S; Petrov D; Dolgikh A; Yu S; Vasileva M; Skripnikov P; Ryzhkov O; Nikerova K; Sushko S; Ananyeva ND; Bochko T; Kuzyakov Y
    Sci Total Environ; 2024 Jun; 927():171881. PubMed ID: 38531454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grazing mediates soil microbial activity and litter decomposition in salt marshes.
    Tang H; Nolte S; Jensen K; Yang Z; Wu J; Mueller P
    Sci Total Environ; 2020 Jun; 720():137559. PubMed ID: 32325578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protist Diversity and Metabolic Strategy in Freshwater Lakes Are Shaped by Trophic State and Watershed Land Use on a Continental Scale.
    Garner RE; Kraemer SA; Onana VE; Huot Y; Gregory-Eaves I; Walsh DA
    mSystems; 2022 Aug; 7(4):e0031622. PubMed ID: 35730947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of litter quality and living plants on the home-field advantage of aquatic macrophyte decomposition in a eutrophic urban lake, China.
    Luai VB; Ding S; Wang D
    Sci Total Environ; 2019 Feb; 650(Pt 1):1529-1536. PubMed ID: 30308838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.
    Zepp RG; Erickson DJ; Paul ND; Sulzberger B
    Photochem Photobiol Sci; 2007 Mar; 6(3):286-300. PubMed ID: 17344963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early stage litter decomposition across biomes.
    Djukic I; Kepfer-Rojas S; Schmidt IK; Larsen KS; Beier C; Berg B; Verheyen K;
    Sci Total Environ; 2018 Jul; 628-629():1369-1394. PubMed ID: 30045558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data.
    Song K; Wang Q; Liu G; Jacinthe PA; Li S; Tao H; Du Y; Wen Z; Wang X; Guo W; Wang Z; Shi K; Du J; Shang Y; Lyu L; Hou J; Zhang B; Cheng S; Lyu Y; Fei L
    Sci Total Environ; 2022 Mar; 810():151188. PubMed ID: 34710411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water table depth, experimental warming, and reduced precipitation impact on litter decomposition in a temperate Sphagnum-peatland.
    Górecki K; Rastogi A; Stróżecki M; Gąbka M; Lamentowicz M; Łuców D; Kayzer D; Juszczak R
    Sci Total Environ; 2021 Jun; 771():145452. PubMed ID: 33736185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sources, Migration, Transformation, and Environmental Effects of Organic Carbon in Eutrophic Lakes: A Critical Review.
    Xu X; Wu C; Xie D; Ma J
    Int J Environ Res Public Health; 2023 Jan; 20(1):. PubMed ID: 36613182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests.].
    Wu QQ; Wang CK
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2422-2432. PubMed ID: 30039682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated photodegradation and biodegradation of organic matter from macrophyte litter in shallow lake water: Dual role of solar irradiation.
    Song N; Jiang HL
    Water Res; 2020 Apr; 172():115516. PubMed ID: 31986394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.