These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 30594465)
1. WDR74 functions as a novel coactivator in TGF-β signaling. Liu J; Zhao M; Yuan B; Gu S; Zheng M; Zou J; Jin J; Liu T; Feng XH J Genet Genomics; 2018 Dec; 45(12):639-650. PubMed ID: 30594465 [TBL] [Abstract][Full Text] [Related]
2. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins. Nakano A; Koinuma D; Miyazawa K; Uchida T; Saitoh M; Kawabata M; Hanai J; Akiyama H; Abe M; Miyazono K; Matsumoto T; Imamura T J Biol Chem; 2009 Mar; 284(10):6109-15. PubMed ID: 19122240 [TBL] [Abstract][Full Text] [Related]
3. The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling. Liang J; Zhou Y; Zhang N; Wang D; Cheng X; Li K; Huang R; Lu Y; Wang H; Han D; Wu W; Han M; Miao S; Wang L; Zhao H; Song W J Biol Chem; 2021; 296():100512. PubMed ID: 33676893 [TBL] [Abstract][Full Text] [Related]
4. Clusterin, a novel modulator of TGF-beta signaling, is involved in Smad2/3 stability. Lee KB; Jeon JH; Choi I; Kwon OY; Yu K; You KH Biochem Biophys Res Commun; 2008 Feb; 366(4):905-9. PubMed ID: 18082619 [TBL] [Abstract][Full Text] [Related]
5. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141 [TBL] [Abstract][Full Text] [Related]
6. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. Miyazawa K; Itoh Y; Fu H; Miyazono K J Biol Chem; 2024 May; 300(5):107256. PubMed ID: 38569937 [TBL] [Abstract][Full Text] [Related]
7. RAP250 is a coactivator in the transforming growth factor beta signaling pathway that interacts with Smad2 and Smad3. Antonson P; Jakobsson T; Almlöf T; Guldevall K; Steffensen KR; Gustafsson JA J Biol Chem; 2008 Apr; 283(14):8995-9001. PubMed ID: 18263591 [TBL] [Abstract][Full Text] [Related]
8. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. Wrighton KH; Willis D; Long J; Liu F; Lin X; Feng XH J Biol Chem; 2006 Dec; 281(50):38365-75. PubMed ID: 17035229 [TBL] [Abstract][Full Text] [Related]
9. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Poncelet AC; de Caestecker MP; Schnaper HW Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488 [TBL] [Abstract][Full Text] [Related]
10. Disruption of the transforming growth factor-β pathway by tolfenamic acid via the ERK MAP kinase pathway. Zhang X; Min KW; Liggett J; Baek SJ Carcinogenesis; 2013 Dec; 34(12):2900-7. PubMed ID: 23864386 [TBL] [Abstract][Full Text] [Related]
11. Ras inhibits TGF-β-induced KLF5 acetylation and transcriptional complex assembly via regulating SMAD2/3 phosphorylation in epithelial cells. Guo P; Xing C; Fu X; He D; Dong JT J Cell Biochem; 2020 Mar; 121(3):2197-2208. PubMed ID: 31724223 [TBL] [Abstract][Full Text] [Related]
12. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Itoh S; Ericsson J; Nishikawa J; Heldin CH; ten Dijke P Nucleic Acids Res; 2000 Nov; 28(21):4291-8. PubMed ID: 11058129 [TBL] [Abstract][Full Text] [Related]
13. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. Brown KA; Pietenpol JA; Moses HL J Cell Biochem; 2007 May; 101(1):9-33. PubMed ID: 17340614 [TBL] [Abstract][Full Text] [Related]
14. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway. Bu S; Kapanadze B; Hsu T; Trojanowska M J Biol Chem; 2008 Jul; 283(28):19593-602. PubMed ID: 18482992 [TBL] [Abstract][Full Text] [Related]
15. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. Felici A; Wurthner JU; Parks WT; Giam LR; Reiss M; Karpova TS; McNally JG; Roberts AB EMBO J; 2003 Sep; 22(17):4465-77. PubMed ID: 12941698 [TBL] [Abstract][Full Text] [Related]
16. Identification of the gene transcription and apoptosis mediated by TGF-beta-Smad2/3-Smad4 signaling. Yu J; Zhang L; Chen A; Xiang G; Wang Y; Wu J; Mitchelson K; Cheng J; Zhou Y J Cell Physiol; 2008 May; 215(2):422-33. PubMed ID: 17960585 [TBL] [Abstract][Full Text] [Related]
17. Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Dai P; Nakagami T; Tanaka H; Hitomi T; Takamatsu T Mol Biol Cell; 2007 Jun; 18(6):2264-73. PubMed ID: 17429065 [TBL] [Abstract][Full Text] [Related]
18. Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling. Dai F; Lin X; Chang C; Feng XH Dev Cell; 2009 Mar; 16(3):345-57. PubMed ID: 19289081 [TBL] [Abstract][Full Text] [Related]
19. Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. Míguez DG; Gil-Guiñón E; Pons S; Martí E J Cell Sci; 2013 Dec; 126(Pt 23):5335-43. PubMed ID: 24105267 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Bourgeois B; Gilquin B; Tellier-Lebègue C; Östlund C; Wu W; Pérez J; El Hage P; Lallemand F; Worman HJ; Zinn-Justin S Sci Signal; 2013 Jun; 6(280):ra49. PubMed ID: 23779087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]