These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 30594492)

  • 1. Phage-based vaccines.
    Bao Q; Li X; Han G; Zhu Y; Mao C; Yang M
    Adv Drug Deliv Rev; 2019 May; 145():40-56. PubMed ID: 30594492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial viruses as human vaccines?
    Clark JR; March JB
    Expert Rev Vaccines; 2004 Aug; 3(4):463-76. PubMed ID: 15270651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage display as a tool for vaccine and immunotherapy development.
    Hess KL; Jewell CM
    Bioeng Transl Med; 2020 Jan; 5(1):e10142. PubMed ID: 31989033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophages as Potential Tools for Use in Antimicrobial Therapy and Vaccine Development.
    Zalewska-Piątek B; Piątek R
    Pharmaceuticals (Basel); 2021 Apr; 14(4):. PubMed ID: 33916345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phages in vaccine design and immunity; mechanisms and mysteries.
    de Vries CR; Chen Q; Demirdjian S; Kaber G; Khosravi A; Liu D; Van Belleghem JD; Bollyky PL
    Curr Opin Biotechnol; 2021 Apr; 68():160-165. PubMed ID: 33316575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases.
    Tao P; Zhu J; Mahalingam M; Batra H; Rao VB
    Adv Drug Deliv Rev; 2019 May; 145():57-72. PubMed ID: 29981801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development.
    Samoylova TI; Braden TD; Spencer JA; Bartol FF
    Curr Med Chem; 2017 Nov; 24(35):3907-3920. PubMed ID: 28901276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage display as a promising approach for vaccine development.
    Aghebati-Maleki L; Bakhshinejad B; Baradaran B; Motallebnezhad M; Aghebati-Maleki A; Nickho H; Yousefi M; Majidi J
    J Biomed Sci; 2016 Sep; 23(1):66. PubMed ID: 27680328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic engineering and biological containment of bacteriophages.
    Mitsunaka S; Yamazaki K; Pramono AK; Ikeuchi M; Kitao T; Ohara N; Kubori T; Nagai H; Ando H
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2206739119. PubMed ID: 36409909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery.
    González-Mora A; Hernández-Pérez J; Iqbal HMN; Rito-Palomares M; Benavides J
    Vaccines (Basel); 2020 Sep; 8(3):. PubMed ID: 32899720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Breadth of Bacteriophages Contributing to the Development of the Phage-Based Vaccines for COVID-19: An Ideal Platform to Design the Multiplex Vaccine.
    Ul Haq I; Krukiewicz K; Yahya G; Haq MU; Maryam S; Mosbah RA; Saber S; Alrouji M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice.
    Ren ZJ; Tian CJ; Zhu QS; Zhao MY; Xin AG; Nie WX; Ling SR; Zhu MW; Wu JY; Lan HY; Cao YC; Bi YZ
    Vaccine; 2008 Mar; 26(11):1471-81. PubMed ID: 18289743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Back to the future: bacteriophages as promising therapeutic tools.
    Domingo-Calap P; Georgel P; Bahram S
    HLA; 2016 Mar; 87(3):133-40. PubMed ID: 26891965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dawn of phage therapy.
    Rehman S; Ali Z; Khan M; Bostan N; Naseem S
    Rev Med Virol; 2019 Jul; 29(4):e2041. PubMed ID: 31050070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological applications of bacteriophages: State of the art.
    Harada LK; Silva EC; Campos WF; Del Fiol FS; Vila M; Dąbrowska K; Krylov VN; Balcão VM
    Microbiol Res; 2018; 212-213():38-58. PubMed ID: 29853167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine.
    Cao B; Yang M; Mao C
    Acc Chem Res; 2016 Jun; 49(6):1111-20. PubMed ID: 27153341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophage therapy: recent developments and applications of a renaissant weapon.
    Fathima B; Archer AC
    Res Microbiol; 2021; 172(6):103863. PubMed ID: 34293451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields.
    Jamal M; Bukhari SMAUS; Andleeb S; Ali M; Raza S; Nawaz MA; Hussain T; Rahman SU; Shah SSA
    J Basic Microbiol; 2019 Feb; 59(2):123-133. PubMed ID: 30485461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunization with tumor neoantigens displayed on T7 phage nanoparticles elicits plasma antibody and vaccine-draining lymph node B cell responses.
    Shukla GS; Sun YJ; Pero SC; Sholler GS; Krag DN
    J Immunol Methods; 2018 Sep; 460():51-62. PubMed ID: 29906453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.