BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30594520)

  • 1. Optimization of ultrasound parameters and its effect on the properties of the activity of beta-glucosidase in apricot kernels.
    Fan XH; Zhang XY; Zhang QA; Zhao WQ; Shi FF
    Ultrason Sonochem; 2019 Apr; 52():468-476. PubMed ID: 30594520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing.
    Zhang N; Zhang QA; Yao JL; Zhang XY
    Ultrason Sonochem; 2019 Nov; 58():104614. PubMed ID: 31450302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ultrasound on the immunoreactivity of amandin, an allergen in apricot kernels during debitterizing.
    Long FF; Fan XH; Zhang QA
    Ultrason Sonochem; 2023 May; 95():106410. PubMed ID: 37088029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ultrasound irradiation on the properties of apricot kernels during accelerated debitterizing.
    Zhang QA; Shi FF; Yao JL; Zhang N
    RSC Adv; 2020 Mar; 10(18):10624-10633. PubMed ID: 35492903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot (
    Deng P; Cui B; Zhu H; Phommakoun B; Zhang D; Li Y; Zhao F; Zhao Z
    Foods; 2021 Feb; 10(2):. PubMed ID: 33670310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Roasting Temperatures on the Properties of Bitter Apricot (Armeniaca sibirica L.) Kernel Oil.
    Jin F; Wang J; M Regenstein J; Wang F
    J Oleo Sci; 2018 Jul; 67(7):813-822. PubMed ID: 29877221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: the variety as a key factor.
    Rudzińska M; Górnaś P; Raczyk M; Soliven A
    Nat Prod Res; 2017 Jan; 31(1):84-88. PubMed ID: 26745662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice.
    Yamshanov VA; Kovan'ko EG; Pustovalov YI
    Bull Exp Biol Med; 2016 Mar; 160(5):712-4. PubMed ID: 27021084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization, α-glucosidase inhibitory activity and antioxidant activity of neutral polysaccharide from apricot (Armeniaca Sibirica L. Lam) kernels.
    Peng Y; Zhang Z; Chen W; Zhao S; Pi Y; Yue X
    Int J Biol Macromol; 2023 May; 238():124109. PubMed ID: 36958449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of Benzaldehyde Produced by the Eco-Friendly Degradation of Amygdalin in the Apricot Kernel Debitterizing Wastewater.
    Song L; García Martín JF; Zhang QA
    Foods; 2024 Jan; 13(3):. PubMed ID: 38338572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Textural properties and consumer preference of functional milk puddings fortified with apricot kernel extracts.
    Li D; Zhang Y; Jiang R; He W
    J Texture Stud; 2022 Apr; 53(2):255-265. PubMed ID: 34870858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro.
    Cassiem W; de Kock M
    BMC Complement Altern Med; 2019 Jan; 19(1):32. PubMed ID: 30696432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils.
    Al Juhaimi F; Musa Özcan M; Ghafoor K; Babiker EE
    Food Chem; 2018 Mar; 243():414-419. PubMed ID: 29146358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Metabolic Profiling for Discrimination of Apricot and Peach Kernels.
    Shirahata T; Kanazawa A; Uematsu M; Fuchino H; Kawano N; Kawahara N; Yoshimatsu K; Hanawa T; Odaguchi H; Kobayashi Y
    Chem Pharm Bull (Tokyo); 2022; 70(12):863-867. PubMed ID: 36450584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and anti-diabetic activity of soluble dietary fiber from apricot pulp by Trichoderma viride fermentation.
    Cui J; Gu X; Zhang Q; Ou Y; Wang J
    Food Funct; 2015 May; 6(5):1635-42. PubMed ID: 25882161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of antioxidant, antimicrobial, and bioactive properties and peptide sequence composition of Malatya apricot kernels.
    Aydın ÇM; Çelikbıçak Ö; Hayaloğlu AA
    J Sci Food Agric; 2024 Jun; ():. PubMed ID: 38837418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fermentation optimization by response surface methodology for enhanced production of beta-glucosidase of Aspergillus niger HDF05].
    Ling H; Ge J; Ping W; Xu X
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):419-26. PubMed ID: 21650023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.).
    Zaghdoudi K; Pontvianne S; Framboisier X; Achard M; Kudaibergenova R; Ayadi-Trabelsi M; Kalthoum-Cherif J; Vanderesse R; Frochot C; Guiavarc'h Y
    Food Chem; 2015 Oct; 184():131-9. PubMed ID: 25872435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-year comparison of the biochemical properties of polyphenol oxidase from Turkish Alyanak apricot (Prunus armenica L.).
    Ünal MÜ; Şener A
    Food Chem; 2016 Jan; 190():741-747. PubMed ID: 26213033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC-MS/MS.
    Ghorab H; Lammi C; Arnoldi A; Kabouche Z; Aiello G
    Food Chem; 2018 Jan; 239():935-945. PubMed ID: 28873655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.