BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30594524)

  • 1. Assessing the translocation of silver nanoparticles using an in vitro co-culture model of human airway barrier.
    Zhang F; Aquino GV; Dabi A; Bruce ED
    Toxicol In Vitro; 2019 Apr; 56():1-9. PubMed ID: 30594524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability.
    Chen IC; Hsiao IL; Lin HC; Wu CH; Chuang CY; Huang YJ
    Environ Toxicol Pharmacol; 2016 Oct; 47():108-118. PubMed ID: 27664952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative and non-invasive method for nanoparticle translocation and toxicity evaluation in a human airway barrier model.
    Zhang F; Aquino GV; Bruce ED
    MethodsX; 2020; 7():100869. PubMed ID: 32382518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking.
    Hsiao IL; Hsieh YK; Chuang CY; Wang CF; Huang YJ
    Environ Toxicol; 2017 Jun; 32(6):1742-1753. PubMed ID: 28181394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro inflammatory effects of hard metal (WC-Co) nanoparticle exposure.
    Armstead AL; Li B
    Int J Nanomedicine; 2016; 11():6195-6206. PubMed ID: 27920526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple in vitro models can predict pulmonary toxicity of silver nanoparticles.
    Braakhuis HM; Giannakou C; Peijnenburg WJ; Vermeulen J; van Loveren H; Park MV
    Nanotoxicology; 2016 Aug; 10(6):770-9. PubMed ID: 26809698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier.
    Bengalli R; Gualtieri M; Capasso L; Urani C; Camatini M
    Toxicol Lett; 2017 Sep; 279():22-32. PubMed ID: 28709982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells.
    Nguyen KC; Richards L; Massarsky A; Moon TW; Tayabali AF
    Toxicol In Vitro; 2016 Jun; 33():163-73. PubMed ID: 26975774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors.
    Shannahan JH; Podila R; Aldossari AA; Emerson H; Powell BA; Ke PC; Rao AM; Brown JM
    Toxicol Sci; 2015 Jan; 143(1):136-46. PubMed ID: 25326241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles.
    Kaur J; Tikoo K
    Food Chem Toxicol; 2013 Jan; 51():1-14. PubMed ID: 22975145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier.
    Costa A; de Souza Carvalho-Wodarz C; Seabra V; Sarmento B; Lehr CM
    Acta Biomater; 2019 Jun; 91():235-247. PubMed ID: 31004840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Systematic Variation in Size and Surface Coating of Silver Nanoparticles on Their In Vitro Toxicity to Macrophage RAW 264.7 Cells.
    Makama S; Kloet SK; Piella J; van den Berg H; de Ruijter NCA; Puntes VF; Rietjens IMCM; van den Brink NW
    Toxicol Sci; 2018 Mar; 162(1):79-88. PubMed ID: 29106689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model.
    Zhang XF; Shen W; Gurunathan S
    Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27669221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung.
    Klein SG; Serchi T; Hoffmann L; Blömeke B; Gutleb AC
    Part Fibre Toxicol; 2013 Jul; 10():31. PubMed ID: 23890538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine.
    Kämpfer AAM; Urbán P; La Spina R; Jiménez IO; Kanase N; Stone V; Kinsner-Ovaskainen A
    Toxicol In Vitro; 2020 Mar; 63():104738. PubMed ID: 31760064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.
    Chen G; Shen Y; Li X; Jiang Q; Cheng S; Gu Y; Liu L; Cao Y
    Environ Toxicol Pharmacol; 2017 Mar; 50():103-110. PubMed ID: 28171821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model.
    Khan AM; Korzeniowska B; Gorshkov V; Tahir M; Schrøder H; Skytte L; Rasmussen KL; Khandige S; Møller-Jensen J; Kjeldsen F
    Nanotoxicology; 2019 Mar; 13(2):221-239. PubMed ID: 30623748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.
    Sweeney S; Leo BF; Chen S; Abraham-Thomas N; Thorley AJ; Gow A; Schwander S; Zhang JJ; Shaffer MSP; Chung KF; Ryan MP; Porter AE; Tetley TD
    Colloids Surf B Biointerfaces; 2016 Sep; 145():167-175. PubMed ID: 27182651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests.
    Bolea E; Jiménez-Lamana J; Laborda F; Abad-Álvaro I; Bladé C; Arola L; Castillo JR
    Analyst; 2014 Mar; 139(5):914-22. PubMed ID: 24162133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.