BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30594711)

  • 1. Formation of dioxins from triclosan with active chlorine: A potential risk assessment.
    Wu JL; Ji F; Zhang H; Hu C; Wong MH; Hu D; Cai Z
    J Hazard Mater; 2019 Apr; 367():128-136. PubMed ID: 30594711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores.
    Buth JM; Steen PO; Sueper C; Blumentritt D; Vikesland PJ; Arnold WA; McNeill K
    Environ Sci Technol; 2010 Jun; 44(12):4545-51. PubMed ID: 20476764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME.
    Lores M; Llompart M; Sanchez-Prado L; Garcia-Jares C; Cela R
    Anal Bioanal Chem; 2005 Mar; 381(6):1294-8. PubMed ID: 15702305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection.
    Buth JM; Ross MR; McNeill K; Arnold WA
    Chemosphere; 2011 Sep; 85(2):284-9. PubMed ID: 21944039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water.
    Zhang YN; Xie Q; Sun G; Yang K; Song S; Chen J; Zhou C; Li Y
    Environ Sci Process Impacts; 2016 Sep; 18(9):1177-84. PubMed ID: 27383795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection.
    Buth JM; Ross MR; McNeill K; Arnold WA
    Chemosphere; 2011 Aug; 84(9):1238-43. PubMed ID: 21652055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressurized liquid extraction-gas chromatography-mass spectrometry for confirming the photo-induced generation of dioxin-like derivatives and other cosmetic preservative photoproducts on artificial skin.
    Alvarez-Rivera G; Llompart M; Garcia-Jares C; Lores M
    J Chromatogr A; 2016 Apr; 1440():37-44. PubMed ID: 26948762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorination of Irgasan DP300 and formation of dioxins from its chlorinated derivatives.
    Kanetoshi A; Ogawa H; Katsura E; Kaneshima H
    J Chromatogr; 1987 Feb; 389(1):139-53. PubMed ID: 3571350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.
    Ding J; Su M; Wu C; Lin K
    Chemosphere; 2015 Aug; 133():41-6. PubMed ID: 25880455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins.
    Buth JM; Grandbois M; Vikesland PJ; McNeill K; Arnold WA
    Environ Toxicol Chem; 2009 Dec; 28(12):2555-63. PubMed ID: 19908930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolytic degradation of triclosan in freshwater and seawater.
    Aranami K; Readman JW
    Chemosphere; 2007 Jan; 66(6):1052-6. PubMed ID: 16930676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products.
    Latch DE; Packer JL; Stender BL; VanOverbeke J; Arnold WA; McNeill K
    Environ Toxicol Chem; 2005 Mar; 24(3):517-25. PubMed ID: 15779749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance of atmospheric pressure gas chromatography-tandem mass spectrometry compared to gas chromatography-high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples.
    Ten Dam G; Pussente IC; Scholl G; Eppe G; Schaechtele A; van Leeuwen S
    J Chromatogr A; 2016 Dec; 1477():76-90. PubMed ID: 27894695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of 2,8-dichlorodibenzo-p-dioxin in toothpaste and mouthwash consumer products using GC-MS.
    Wu J; Hu C; Li C; Cai Z; Hu D
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18927-32. PubMed ID: 26208660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further research on the photo-SPME of triclosan.
    Sánchez-Prado L; Llompart M; Lores M; Fernández-Alvarez M; García-Jares C; Cela R
    Anal Bioanal Chem; 2006 Apr; 384(7-8):1548-57. PubMed ID: 16520937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dioxin formation from waste incineration.
    Shibamoto T; Yasuhara A; Katami T
    Rev Environ Contam Toxicol; 2007; 190():1-41. PubMed ID: 17432330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine.
    Canosa P; Morales S; Rodríguez I; Rubí E; Cela R; Gómez M
    Anal Bioanal Chem; 2005 Dec; 383(7-8):1119-26. PubMed ID: 16261326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of combined UV and chlorine treatment on chloroform formation from triclosan.
    Ben W; Sun P; Huang CH
    Chemosphere; 2016 May; 150():715-722. PubMed ID: 26746417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of polychlorinated dibenzo-p-dioxins in aqueous solution by Fe(II)/H2O2/UV system.
    Katsumata H; Kaneco S; Suzuki T; Ohta K; Yobiko Y
    Chemosphere; 2006 Apr; 63(4):592-9. PubMed ID: 16213552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ah receptor agonists in UV-exposed toluene solutions of decabromodiphenyl ether (decaBDE) and in soils contaminated with polybrominated diphenyl ethers (PBDEs).
    Olsman H; Hagberg J; Kalbin G; Julander A; van Bavel B; Strid A; Tysklind M; Engwall M
    Environ Sci Pollut Res Int; 2006 May; 13(3):161-9. PubMed ID: 16758706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.